Synlett 2021; 32(15): 1542-1546
DOI: 10.1055/s-0040-1707817
cluster
Modern Nickel-Catalyzed Reactions

Nickel-Catalyzed Negishi-Type Arylation of Trialkylsulfonium Salts

Hiroko Minami
,
Keisuke Nogi
,
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Numbers JP18H04254, JP18H04409, JP19H00895, and JP18K14212) as well as the Japan Science and Technology Agency (JST CREST, Grant Number JPMJCR19R4).


Abstract

Negishi-type arylation of trialkylsulfonium salts with arylzinc reagents has been accomplished under nickel catalysis. The use of cyclohexanethiol as an additional ligand was found to be particularly important to promote C–S cleavage. The present reaction accommodates one-pot arylation of dialkyl sulfides by combining with S-methylation with MeOTf. Mechanistic experiments suggest that C–S cleavage would proceed via single-electron transfer (SET) to generate the most stable carbon-centered radical and that the thiolate ligand would promote the C–S cleavage and radical recombination step.

Supporting Information



Publication History

Received: 10 April 2020

Accepted: 28 April 2020

Article published online:
16 June 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
    • 1b Applied Cross-Coupling Reactions . Nishihara Y. Springer; Heidelberg: 2013
    • 1c Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1d Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722

      Selected reviews:
    • 2a Netherton MR, Fu GC. Adv. Synth. Catal. 2004; 346: 1525
    • 2b Frisch AC, Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
    • 2c Yorimitsu H, Oshima K. Pure Appl. Chem. 2006; 78: 441
    • 2d Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 2e Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
    • 2f Hu X. Chem. Sci. 2011; 2: 1867
    • 2g Nakamura E, Hatakeyama T, Ito S, Ishizuka K, Ilies L, Nakamura M. Org. React. 2014; 83: 1
    • 2h Iwasaki T, Kambe N. Top. Curr. Chem. 2016; 374: 66
    • 2i Choi J, Fu GC. Science 2017; 356: eaaf7230
    • 2j Fu GC. ACS Cent. Sci. 2017; 3: 692
    • 2k Kaga A, Chiba S. ACS Catal. 2017; 7: 4697
    • 2l Terao J, Kambe N. Bull. Chem. Soc. Jpn. 2006; 79: 663
    • 2m Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299

      Recent reviews:
    • 3a Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 3b Modha SG, Mehta VP, van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 3c Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
    • 3d Gao K, Otsuka S, Baralle A, Nogi K, Yorimitsu H, Osuka A. J. Synth. Org. Chem., Jpn. 2016; 74: 1119
    • 3e Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13

      A review on the reaction with benzylic dithioacetals:
    • 4a Luh TY. Acc. Chem. Res. 1991; 24: 257

    • The reactions with benzyl sulfones:
    • 4b Wu J.-C, Gong L.-B, Xia Y, Song R.-J, Xie Y.-X, Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 9909
    • 4c Nambo M, Crudden CM. Angew. Chem. Int. Ed. 2014; 53: 742
    • 4d Nambo M, Keske EC, Rygus JP. G, Yim JC. H, Crudden CM. ACS Catal. 2017; 7: 1108
    • 4e Yim JC. H, Nambo M, Crudden CM. Org. Lett. 2017; 19: 3715
    • 4f Ariki ZT, Maekawa Y, Nambo M, Crudden CM. J. Am. Chem. Soc. 2018; 140: 78
    • 4g Nambo M, Tahara Y, Yim JC. H, Crudden CM. Chem. Eur. J. 2019; 25: 1923
    • 4h Yim JC.-H, Nambo M, Tahara Y, Crudden CM. Chem. Lett. 2019; 48: 975
    • 4i Nambo M, Yim JC.-H, Freitas LB. O, Tahara Y, Ariki ZT, Maekawa Y, Yokogawa D, Crudden CM. Nat. Commun. 2019; 10: 4528

      For examples:
    • 5a Gendreau Y, Normant JF, Villieras J. J. Organomet. Chem. 1977; 142: 1
    • 5b Barsanti P, Calò V, Lopez L, Marchese G, Naso F, Pesce G. J. Chem. Soc., Chem. Commun. 1978; 1085
    • 5c Julia M, Righini A, Verpeaux J.-N. Tetrahedron Lett. 1979; 20: 2393
    • 5d Trost BM, Schmuff NR, Miller MJ. J. Am. Chem. Soc. 1980; 102: 5979
    • 5e Julia M, Righini-Tapif A, Verpeaux J.-N. Tetrahedron 1983; 39: 3283
    • 5f Julia M, Verpeaux J.-N. Tetrahedron 1983; 39: 3289
    • 5g Masaki Y, Sakuma K, Kaji K. J. Chem. Soc., Perkin Trans. 1 1985; 1171
    • 5h Takeda K, Tsuboyama K, Torii K, Murata M, Ogura H. Tetrahedron Lett. 1988; 29: 4105
    • 5i Trost BM, Merlic CA. J. Am. Chem. Soc. 1988; 110: 5216
  • 6 Miao W, Zhao Y, Ni C, Gao B, Zhang W, Hu J. J. Am. Chem. Soc. 2018; 140: 880
  • 7 As α-carbonyl-activated organosulfur compounds, C–S cleavage of α-ketothioesters has been reported recently: Wang M, Dai Z, Jiang X. Nat. Commun. 2019; 10: 2661
  • 8 Denmark SE, Cresswell AJ. J. Org. Chem. 2013; 78: 12593
  • 9 Merchant RR, Edwards JT, Qin T, Kruszyk MM, Bi C, Che G, Bao D.-H, Qiao W, Sun L, Collins MR, Fadeyi OO, Gallego GM, Mousseau JJ, Nuhant P, Baran PS. Science 2018; 360: 75
  • 10 Nickel-catalyzed alkenylative cross-coupling of alkyl aryl sulfides with arylmagnesium reagents has been reported by Nakamura. See: Ishizuka K, Seike H, Hatakeyama T, Nakamura M. J. Am. Chem. Soc. 2010; 132: 13117
    • 11a Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
    • 11b Vasu D, Yorimitsu H, Osuka A. Synthesis 2015; 47: 3286
    • 11c Kawashima H, Yanagi T, Wu C.-C, Nogi K, Yorimitsu H. Org. Lett. 2017; 19: 4552
    • 11d Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
    • 11e Uno D, Minami H, Otsuka S, Nogi K, Yorimitsu H. Chem. Asian J. 2018; 13: 2397
    • 11f Minami H, Nogi K, Yorimitsu H. Heterocycles 2018; 97: 998
    • 11g Otsuka S, Nogi K, Rovis T, Yorimitsu H. Chem. Asian J. 2019; 14: 532
    • 11h Minami H, Nogi K, Yorimitsu H. Org. Lett. 2019; 21: 2518
    • 11i Yanagi T, Somerville RJ, Nogi K, Martin R, Yorimitsu H. ACS Catal. 2020; 10: 2117

      Pioneering works on cross-coupling of sulfonium salts:
    • 12a Srogl J, Allred GD, Liebeskind LS. J. Am. Chem. Soc. 1997; 119: 12376
    • 12b Zhang S, Marshall D, Liebeskind LS. J. Org. Chem. 1999; 64: 2796

      For recent review and examples from other groups, see:
    • 13a Tian Z.-Y, Hu Y.-T, Teng H.-B, Zhang C.-P. Tetrahedron Lett. 2018; 59: 299
    • 13b Cowper P, Jin Y, Turton MD, Kociok-Köhn G, Lewis SE. Angew. Chem. Int. Ed. 2016; 55: 2564
    • 13c Wang S.-M, Wang X.-Y, Qin H.-L, Zhang C.-P. Chem. Eur. J. 2016; 22: 6542
    • 13d Wang S.-M, Song H.-X, Wang X.-Y, Liu N, Qin H.-L, Zhang C.-P. Chem. Commun. 2016; 52: 11893
    • 13e Wang X.-Y, Song H.-X, Wang S.-M, Yang J, Qin H.-L, Jiang X, Zhang C.-P. Tetrahedron 2016; 72: 7606
    • 13f Tian Z.-Y, Wang S.-M, Jia S.-J, Song H.-X, Zhang C.-P. Org. Lett. 2017; 19: 5454
    • 13g Aukland MH, Talbot FJ. T, Fernández-Salas JA, Ball M, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 9785
    • 13h Tian Z.-Y, Zhang C.-P. Chem. Commun. 2019; 55: 11936
    • 13i Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
    • 13j Engl PS, Häring AP, Berger F, Berger G, Pérez-Bitrián A, Ritter T. J. Am. Chem. Soc. 2019; 141: 13346
    • 13k Ye F, Berger F, Jia H, Ford J, Wortman A, Börgel J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 14615
    • 13l Sang R, Korkis SE, Su W, Ye F, Engl PS, Berger F, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 16161
    • 13m Aukland MH, Šiaučiulis M, West A, Perry GJ. P, Procter DJ. Nat. Catal. 2020; 3: 163
    • 13n Kafuta K, Korzun A, Böhm M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 1950

      Selected recent examples of nickel-catalyzed Negishi coupling reactions, see ref. 9, 13g, and:
    • 14a Abdiaj I, Fontana A, Gomez MV, de la Hoz A, Alcázar J. Angew. Chem. Int. Ed. 2018; 57: 8473
    • 14b Plunkett S, Basch CH, Santana SO, Watson MP. J. Am. Chem. Soc. 2019; 141: 2257
    • 14c Wu X, Li X, Huang W, Wang Y, Xu H, Cai L, Qu J. Org. Lett. 2019; 21: 2453
    • 14d Weng Y, Zhang C, Tang Z, Shrestha M, Huang W, Qu J, Chen Y. Nat. Commun. 2020; 11: 392
    • 14e Angelini L, Sanz LM, Leonari D. Synlett 2020; 31: 37
    • 14f Shuai B, Li Z.-M, Qiu H, Fang P, Mei T.-S. Chin. J. Org. Chem. 2020; 40: 651
  • 15 Piller FM, Appukkuttan P, Gavryushin A, Helm M, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 6802
  • 16 Although we initially tested an arylmagnesium reagent, the yield was lower than that with the corresponding arylzinc reagent. See Scheme S1 in the Supporting Information.
  • 17 4-Dodecylanisole (3aa) – Typical Procedure for One-Pot Arylation A 10 mL Schlenk tube was charged with dodecyl methyl sulfide (4a, 0.11 g, 0.50 mmol) and DCE (1.0 mL) before an addition of MeOTf (74 μL, 0.65 mmol). The resulting mixture was stirred for 12 h at 60 °C. After removal of all volatiles under reduced pressure (ca. 1 Torr), NiCl2(bpy) (7.1 mg, 0.025 mmol), CySH (6 μL, 0.050 mmol), and DMA (3.0 mL) were subsequently added to the tube. The resulting mixture was cooled to 0 °C, and a solution of 4-methoxyphenylzinc (2a, 0.56 M in THF, 1.8 mL, 1.0 mmol) was then added dropwise. The resulting mixture was stirred for 12 h at 0 °C before an addition of aqueous HCl (2 M). The resulting biphasic solution was extracted with a mixture of hexane and EtOAc (v/v = 10:1, 3 × 10 mL). The combined organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane/EtOAc = 100:1) to give 3aa (0.11 g, 0.41 mmol, 82%) as a colorless oil. All the resonances in 1H NMR and 13C NMR spectra were consistent with the reported values in the literature: Komeyama K, Ohata R, Kiguchi S, Osaka I. Chem. Commun. 2017; 53: 6401
  • 18 Ethyl 6-(4-Methoxyphenyl)hexanoate (3ba) Colorless oil (76 mg, 0.30 mmol, 60%). 1H NMR (594 MHz): δ = 7.08 (d, J = 8.8 Hz, 2 H), 6.82 (d, J = 8.8 Hz, 2 H), 4.12 (q, J = 7.3 Hz, 2 H), 3.79 (s, 3 H), 2.55 (t, J = 7.5 Hz, 2 H), 2.28 (t, J = 7.5 Hz, 2 H), 1.68–1.57 (m, 4 H), 1.38–1.33 (m, 2 H), 1.25 (t, J = 7.3 Hz, 3 H). 13C NMR (149 MHz): δ = 174.0, 157.8, 134.8, 129.4, 113.8, 60.3, 55.4, 34.9, 34.4, 31.5, 28.8, 25.0, 14.4. HRMS (APCI-MS, positive): m/z calcd for C15H23O3: 251.1642 [M + H]+; found: 251.1645.
  • 19 Guilder D, Ingold KU. Acc. Chem. Res. 1980; 13: 317