Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(13): 1295-1297
DOI: 10.1055/s-0040-1707852
DOI: 10.1055/s-0040-1707852
letter
Potassium Carbonate Promoted Nucleophilic Addition of Alkenes with Phosphites
We thank the National Natural Science Foundation of China (21861024, 21571094, 21571094) for financial support.
Further Information
Publication History
Received: 12 December 2019
Accepted after revision: 08 May 2020
Publication Date:
18 June 2020 (online)

◊ These authors contributed equally to this work.
Abstract
A facile hydrophosphonylation of alkenes by phosphites promoted by potassium carbonate was developed. The reaction features include easy handling, environmental friendliness, and avoidance of the use of strong bases. A variety of alkenes are tolerated in this reaction, with moderate to excellent yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707852.
- Supporting Information
-
References and Notes
- 1a Babine RE, Bender SL. Chem. Rev. 1997; 97: 1359
- 1b Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681 ; corrigendum: Chem. Rev. 2007, 107, 303
- 1c Boëdec A, Sicard H, Dessolin J, Herbette G, Ingoure S, Raymond C, Belmant C, Kraus J.-L. J. Med. Chem. 2008; 51: 1747
- 1d Yang Y, Coward JK. J. Org. Chem. 2007; 72: 5748
- 1e Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 1f Feng Y, Coward JK. J. Med. Chem. 2006; 49: 770
- 2a Enders D, Saint-Dizier A, Lannou M.-I, Lenzen A. Eur. J. Org. Chem. 2006; 29
- 2b Rulev AY. RSC Adv. 2014; 4: 26002
- 2c Greenberg ZS, Stephan DW. Chem. Soc. Rev. 2008; 37: 1482
- 2d Coudray L, Montchamp J.-L. Eur. J. Org. Chem. 2008; 3601
- 3a Woo W.-J, Kobayashi S. Green Chem. 2013; 15: 1844
- 3b Li Z, Fan F, Zhang Z, Xiao Y, Liu D, Liu Z.-Q. RSC Adv. 2015; 5: 27853
- 3c Tayama H, Nakano A, Iwahama T, Sakaguchi S, Ishii Y. J. Org. Chem. 2004; 69: 5494
- 3d Bravo-Altamirano K, Coudray L, Deal EL, Montchamp J.-L. Org. Biomol. Chem. 2010; 8: 5541
- 3e Duraud A, Toffano M, Fiaud J.-C. Eur. J. Org. Chem. 2009; 4400
- 3f Ajellal N, Thomas CM, Carpentier J.-F. Adv. Synth. Catal. 2006; 348: 1093
- 3g Reichwein JF, Patel MC, Pagenkopf BL. Org. Lett. 2001; 3: 4303
- 3h Leyva-Pérez A, Vidal-Moya JA, Cabrero-Antonino JR, Al-Deyab SS, Al-Resayes SI, Corma A. J. Organomet. Chem. 2010; 696: 362
- 4a Sobhani S, Rezazadeh S. Synlett 2010; 1485
- 4b Ali TE. Heteroat. Chem. 2013; 24: 426
- 4c Green K. Tetrahedron Lett. 1989; 30: 4807
- 5a Salin AV, I’lin AV, Faskhutdinov RI, Galkin VI, Islamov DR, Kataeva ON. Tetrahedron Lett. 2018; 59: 1630
- 5b Huang T.-Z, Chen T, Saga Y, Han L.-B. Tetrahedron 2017; 73: 7085
- 5c Saga Y, Han D, Kawaguchi S.-i, Ogawa A, Han L.-B. Tetrahedron Lett. 2015; 56: 5303
- 5d Salin AV, Il’in AV, Shamsutdinova FG. Curr. Org. Synth. 2016; 13: 132
- 6a Han L.-B, Zhao C.-Q. J. Org. Chem. 2005; 70: 10121
- 6b Farnham WB, Murray RK, Mislow K. J. Chem. Soc. D 1971; 146
- 6c Semenzin D, Etemad-Moghadam G, Albouy D, Diallo O, Koenig M. J. Org. Chem. 1997; 62: 2414
- 6d Hirai T, Han L.-B. Org. Lett. 2007; 9: 53
- 7a Lenker HK, Richard ME, Reese KP, Carter AF, Zawisky JD, Winter EF, Bergeron TW, Guydon KS, Stockland RA. Jr. J. Org. Chem. 2012; 77: 1378
- 7b Stockland RA, Taylor RI, Thompson LE, Patel PB. Org. Lett. 2005; 7: 851
- 8a Rulev AY, Larina LI, Voronkov MG. Tetrahedron Lett. 2000; 41: 10211
- 8b Keglevich G, Sipos M, Takács D, Greiner I. Heteroat. Chem. 2007; 18: 226
- 9a Miller RC, Bradley JS, Hamilton LA. J. Am. Chem. Soc. 1956; 78: 5299
- 9b Bunlaksananusorn T, Knochel P. Tetrahedron Lett. 2002; 43: 5817
- 10 Wen S, Li P, Wu H, Yu F, Liang X, Ye J. Chem. Commun. 2010; 46: 4806
- 11 Wang J.-P, Nie S.-Z, Zhou Z.-Y, Ye J.-J, Wen J.-H, Zhao C.-Q. J. Org. Chem. 2016; 81: 7644
- 12a Lachia M, Iriart S, Baalouch M, De Mesmaeker A, Beaudegnies R. Tetrahedron Lett. 2011; 52: 3219
- 12b Jiang Z, Zhang Y, Ye W, Tan C.-H. Tetrahedron Lett. 2007; 48: 51
- 12c Zhu X.-Y, Chen J.-R, Lu L.-Q, Xiao W.-J. Tetrahedron 2012; 68: 6032
- 13a Zhao D, Wang L, Yang D, Zhang Y, Wang R. Chem. Asian J. 2012; 7: 881
- 13b Zhao E, Mao L, Yang D, Wang R. Chem. Commun. 2012; 48: 889
- 13c Zhao E, Mao L, Yang D, Wang R. J. Org. Chem. 2010; 75: 6756
- 14a Huang L, Gong J, Zhu Z, Wang Y, Guo S, Cai H. Org. Lett. 2017; 19: 2242
- 14b Gong J, Huang L, Deng Q, Jie K, Wang Y, Guo S, Cai H. Org. Chem. Front. 2017; 4: 1781
- 14c Wang Y, Yang Y, Jie K, Huang L, Guo S, Cai H. ChemCatChem 2018; 10: 716
- 14d Guo S, Jie K, Zhang Z, Fu Z, Cai H. Eur. J. Org. Chem. 2019; 1808
- 14e Guo S, Jie K, Huang L, Zhang Z, Wang Y, Fu Z, Cai H. Synlett 2019; 30: 1090
- 14f Huang L, Zhang Z, Jie K, Wang Y, Fu Z, Guo S, Cai H. Org. Chem. Front. 2018; 5: 3548
- 14g Wang Y, Yang Y, Huang L, Jie K, Guo S, Cai H. Youji Huaxue 2017; 37: 3220
- 15 Butyl 3-(Diphenylphosphoryl)propanoate (3a); Typical Procedure A mixture of 1a (0.4 mmol), 2a (0.8 mmol), and K2CO3 (0.8 mmol) in DCE (2 mL) was heated at 100 °C under N2 for 4 h. The mixture was then extracted with DCE (3 × 5 mL) and the combined organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by TLC [silica gel, PE–EtOAc (3:1)] to give a colorless liquid; yield: 132 mg (95%). 1H NMR (400 MHz, CDCl3): δ = 7.68 (dd, J = 10.9, 7.6 Hz, 4 H), 7.43 (dd, J = 21.7, 6.4 Hz, 6 H), 3.96 (t, J = 6.6 Hz, 2 H), 2.55 (s, 4 H), 1.48 (pent, J = 6.8 Hz, 2 H), 1.25 (hept, J = 7.3 Hz, 2 H), 0.82 (t, J = 7.4 Hz, 3 H). HRMS (ESI): m/z [M + H]+ calcd for C19H24O3P: 331.1458; found: 331.1467.