Synthesis 2020; 52(24): 3837-3854
DOI: 10.1055/s-0040-1707905
special topic
© Georg Thieme Verlag Stuttgart · New York

The Use of Domino Reactions for the Synthesis of Chiral Rings

Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France   Email: h.pellissier@univ-amu.fr
› Author Affiliations
Further Information

Publication History

Received: 22 April 2020

Accepted after revision: 28 May 2020

Publication Date:
22 July 2020 (online)


Published as part of the Special Topic Recent Advances in Metal-Catalyzed Ring Construction

Abstract

This short review highlights the recent developments reported in the last four years on the asymmetric construction of chiral rings based on enantioselective domino reactions promoted by chiral metal catalysts.

1 Introduction

2 Formation of One Ring Containing One Nitrogen Atom

3 Formation of One Ring Containing One Oxygen/Sulfur Atom

4 Formation of One Ring Containing Several Heterocyclic Atoms

5 Formation of One Carbon Ring

6 Formation of Two Rings

7 Conclusion

 
  • References

    • 3a Multicomponent Reactions in Organic Synthesis . Zhu V, Wang Q, Wang M. Wiley-VCH; Weinheim: 2014
    • 3b Multicomponent Reactions: Concepts and Applications for Design and Synthesis. Herrera RP, Marques-Lopez E. John Wiley; Hoboken: 2015
    • 4a Bianchi E, Caldwell ME, Cole JR. J. Pharm. Sci. 1968; 57: 696
    • 4b Miyazawa M, Kasahara H, Kameoka H. Phytochemistry 1996; 42: 531
    • 4c Jensen BS. CNS Drug Rev. 2002; 8: 353
    • 4d Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 4e Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 4f Huo J, Yang S.-P, Ding J, Yue J.-M. J. Nat. Prod. 2004; 67: 1470
    • 4g Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W. J. Nat. Prod. 2007; 70: 1321
    • 4h Galliford CV, Scheidt K. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 4i Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 4j Trost BM, Bringley DA, Zhang T, Cramer N. J. Am. Chem. Soc. 2013; 135: 16720
    • 4k Yu B, Yu D.-Q, Liu H.-M. Eur. J. Med. Chem. 2015; 97: 673
    • 4l Pellissier H. Beilstein J. Org. Chem. 2018; 14: 1349
    • 4m Pellissier H. Synthesis 2019; 51: 1311
    • 4n Dalpozzo R, Pellissier H, Chimni SS, Torres RR. Asymmetric Synthesis of 3,3-Disubstituted Oxindoles . World Scientific Publishing Europe Ltd; London: 2019
    • 5a Abbiati G, Rossi E. Beilstein J. Org. Chem. 2014; 10: 481
    • 5b Pellissier H. Chem. Rev. 2016; 116: 14868
    • 5c Silver Catalysis in Organic Synthesis . Li C.-J, Bi X. Wiley-VCH; Weinheim: 2019
  • 6 Li J.-Y, Kim HY, Oh K. Adv. Synth. Catal. 2016; 358: 984
  • 7 Kimura M, Matsuda Y, Koizumi A, Tokumitsu C, Tokoro Y, Fukuzawa S.-i. Tetrahedron 2016; 72: 2666
  • 8 Liu H.-C, Tao H.-Y, Cong H, Wang C.-J. J. Org. Chem. 2016; 81: 3752
  • 9 Bai X.-F, Zhang J, Xia C.-G, Xu J.-X, Xu L.-W. Tetrahedron 2016; 72: 2690
    • 10a Pellissier H, Clavier H. Chem. Rev. 2014; 114: 2775
    • 10b Pellissier H. Coord. Chem. Rev. 2018; 360: 122
    • 10c Pellissier H. Enantioselective Cobalt-Catalyzed Transformations . Royal Society of Chemistry; Cambridge: 2018
    • 10d Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Hapke M, Hilt G. Wiley-VCH; Weinheim: 2020
  • 11 Yu S, Wu C, Ge S. J. Am. Chem. Soc. 2017; 139: 6526
  • 12 Zhou Y, Yu L, Chen J, Xu J, He Z, Shen G, Fan B. Org. Lett. 2018; 20: 1291
    • 13a Vlaar T, Ruijter E, Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 13b Döndas HA, de Gracia Retamosa M, Sansano JM. Organometallics 2019; 38: 1828
  • 14 Liu R.-R, Wang Y.-G, Li Y.-L, Huang B.-B, Liang R.-X, Jia Y.-X. Angew. Chem. Int. Ed. 2017; 56: 7475
    • 15a Wilke G. Angew. Chem., Int. Ed. Engl. 1988; 27: 185
    • 15b Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 15c Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
    • 15d Themed issue on Recent Advances in Organonickel Chemistry: Jamison T. Ed. Tetrahedron 2006; 62: 7493
    • 15e Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 15f Ankner T, Cosner CC, Helquist P. Chem. Eur. J. 2013; 19: 1858
    • 15g Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 15h Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 15i Pellissier H. Enantioselective Nickel-Catalysed Transformations . Royal Chemical Society; Cambridge: 2016
  • 16 Pellissier H. Curr. Org. Chem. 2016; 20: 234
  • 17 Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
  • 18 Yang J, Ke C, Zhang D, Liu X, Feng X. Org. Lett. 2018; 20: 4536
  • 19 Li X, Xiong Q, Guan M, Dong S, Liu X, Feng X. Org. Lett. 2019; 21: 6096
  • 20 Daniels BE, Ni J, Reisman SE. Angew. Chem. Int. Ed. 2016; 55: 3398
    • 21a Galestokova Z, Sebesta R. Eur. J. Org. Chem. 2012; 6688
    • 21b Pellissier H. Curr. Org. Chem. 2018; 22: 2670
  • 22 Dighe SU, Mahar R, Shukla SK, Kant R, Srivastava K, Batra S. J. Org. Chem. 2016; 81: 4751
  • 23 Pellissier H. Org. Biomol. Chem. 2017; 15: 4750
  • 24 Mao Z, Mo F, Lin X. Synlett 2016; 27: 546
  • 25 Hodik T, Schneider C. Chem. Eur. J. 2018; 24: 18082
  • 26 Force G, Lock Toy Ki Y, Isaac K, Retailleau P, Marinetti A, Betzer J.-F. Adv. Synth. Catal. 2018; 360: 3356
  • 27 Touchet S, Reddy Kommidi SS, Gros PC. ChemistrySelect 2018; 3: 3939
  • 28 Kannan M, De PB, Pradhan S, Punniyamurthy T. ChemistrySelect 2018; 3: 859
  • 29 Miao Y.-H, Hua Y.-Z, Wang M.-C. Org. Biomol. Chem. 2019; 17: 7172
  • 30 Alamsetti SK, Spanka M, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392
  • 31 Tietze LF, Jackenroll S, Ganapathy D, Reiner JR. Synlett 2016; 27: 96
  • 32 Quintard A, Roudier M, Rodriguez J. Synthesis 2018; 50: 785
  • 33 Franchino A, Jakubec P, Dixon DJ. Org. Biomol. Chem. 2016; 14: 93
  • 34 Luo W, Yuan X, Lin L, Zhou P, Liu X, Feng XM. Chem. Sci. 2016; 7: 4736
  • 35 Pan H, Huang H, Liu W, Tian H, Shi Y. Org. Lett. 2016; 18: 896
  • 36 Du P, Zhou H, Sui Y, Liu Q, Zou K. Tetrahedron 2016; 72: 1573
  • 37 Xia Y, Lin L, Chang F, Liao Y, Liu X, Feng XM. Angew. Chem. Int. Ed. 2016; 55: 12228
  • 38 Hack D, Dürr AB, Deckers K, Chauhan P, Seling N, Rübenach L, Mertens L, Raabe G, Schoenebeck F, Enders D. Angew. Chem. Int. Ed. 2016; 55: 1797
  • 39 Laugeois M, Ponra S, Ratovelomanana-Vidal V, Michelet V, Vitale MR. Chem. Commun. 2016; 52: 5332
  • 40 Halskov KS, Naesborg L, Tur F, Jørgensen KA. Org. Lett. 2016; 18: 2220
  • 41 Meazza M, Rios R. Chem. Eur. J. 2016; 22: 9923
  • 42 Yao Q, Lin L, Zhang H, Yu H, Xiong Q, Liu X, Feng XM. Org. Chem. Front. 2017; 4: 2012
  • 43 Zhang T, Luan Y.-X, Zheng S.-J, Peng Q, Ye M. Angew. Chem. Int. Ed. 2020; 59: 7439
  • 44 Mei H, Lin L, Shen B, Liu X, Feng X. Org. Chem. Front. 2018; 5: 2505
  • 45 Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett. 2019; 21: 1632
  • 46 Cheng H, Zhang R, Yang S, Wang M, Zeng X, Xie L, Xie C, Wu J, Zhong G. Adv. Synth. Catal. 2016; 358: 970
  • 47 Cheng H, Zhang R, Wang M, Zeng X, Xie C. Asian J. Org. Chem. 2018; 7: 1075
  • 48 Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2018; 140: 6203
  • 49 Shu T, Zhao L, Li S, Chen X.-Y, von Essen C, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2018; 57: 10985
  • 50 Ping Y, Wang K, Pan Q, Ding Z, Zhou Z, Guo Y, Kong W. ACS Catal. 2019; 9: 7335
  • 51 Li J, Lin L, Hu B, Lian X, Wang G, Liu X, Feng X. Angew. Chem. Int. Ed. 2016; 55: 6075