Synlett 2020; 31(13): 1259-1267
DOI: 10.1055/s-0040-1707962
account
© Georg Thieme Verlag Stuttgart · New York

Relevance of the Entropy Factor in Stereoselectivity Control of Asymmetric Photoreactions

Tadashi Mori
Financial support from the Japan Society for the Promotion of Science [Grant-in-Aid for Scientific Research, Challenging Exploratory Research, Promotion of Joint International Research (Fostering Joint International Research) (Grant Nos. JP16H06041, JP16KK0111, JP17H05261, JP18K19077, and JP18H01964)], the Asahi Glass Foundation, the Murata Science Foundation, the Tonen General Sekiyu Research/Development Encouragement & Scholarship Foundation, and the Cooperative Research Program of the Network Joint Research Center for Materials and Devices is greatly acknowledged.
Further Information

Publication History

Received: 19 February 2020

Accepted after revision: 11 March 2020

Publication Date:
24 April 2020 (online)


This paper is dedicated to the memory of the late Professor Rajendra Rathore, Marquette University and the late Professor Jay K. Kochi, Houston University.

Abstract

Entropy as well as enthalpy factors play substantial roles in various chemical phenomena such as equilibrium and reactions. However, the entropy factors are frequently underestimated in most instances, particularly in synthetic chemistry. In reality, the entropy factor can be in competition with the enthalpy factor or can even be decisive in determining the overall free or activation energy change upon molecular interaction and chemical transformation, particularly where weak interactions in ground and/or excited states are significant. In this account, we overview the importance of the entropy factor in various chemical phenomena in both thermodynamics and kinetics and in the ground and excited states. It is immediately apparent that many diastereo- and enantioselective photoreactions are entropy-controlled. Recent advances on the entropy-control concept in asymmetric photoreactions are further discussed. Understanding the entropy-control concept will pave the way to improve, fine-tune, and even invert the chemo- and stereoselectivity of relevant chemical phenomena.

1 Introduction

2 Role of Entropy in Supramolecular Interactions

3 Selected Examples of Entropy-Driven Thermal Reactions

4 Classical Examples of Entropy Control in Photoreactions

5 Entropy-Driven Asymmetric Photoreactions

6 Advances in Entropy Control

7 Perspective

 
  • References

  • 2 Trakhtenberg S, Warner JC. Chem. Rev. 2007; 107: 2174
  • 3 Nagasaki K, Inoue Y, Mori T. Angew. Chem. Int. Ed. 2018; 57: 4880
    • 4a Huang X, Meggers E. Acc. Chem. Res. 2019; 52: 833
    • 4b Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673
    • 4c Brenninger C, Jolliffe JD, Bach T. Angew. Chem. Int. Ed. 2018; 57: 14338
    • 4d Zhang L, Meggers E. Acc. Chem. Res. 2017; 50: 320
    • 4e Fukuzumi S, Jung J, Lee Y.-M, Nam W. Asian J. Org. Chem. 2017; 6: 397
    • 4f Yoon TP. Acc. Chem. Res. 2016; 49: 2307
    • 4g Amador AG, Yoon TP. Angew. Chem. Int. Ed. 2016; 55: 2304
    • 5a Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
    • 5b Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
    • 6a Biedermann F, Schneider H.-J. Chem. Rev. 2016; 116: 5216
    • 6b Chodera JD, Mobley DL. Annu. Rev. Biophys. 2013; 42: 121
    • 6c Starikov EB, Nordén B. Chem. Phys. Lett. 2012; 538: 118
    • 6d Starikov EB, Nordén B. Appl. Phys. Lett. 2012; 100: 193701
    • 6e Sharp K. Protein Sci. 2001; 10: 661
    • 6f Liu L, Guo Q.-X. Chem. Rev. 2001; 101: 673
  • 7 Ursu A, Schmidtchen FP. Angew. Chem. Int. Ed. 2012; 51: 242
  • 8 Rekharsky MV, Mori T, Yang C, Ko YH, Selvapalam N, Kim H, Sobransingh D, Kaifer AE, Liu S, Isaacs L, Chen W, Moghaddam S, Gilson MK, Kim K, Inoue Y. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 20737
  • 9 Läufer AG. E, Dreeskamp H, Zachariasse KA. Chem. Phys. Lett. 1985; 121: 523
  • 10 Komfort M, Rohne B, Dreeskamp H, Zander M. J. Photochem. Photobiol. A 1993; 71: 39
  • 11 Mutoh K, Nakagawa Y, Hatano S, Kobayashi Y, Abe J. Phys. Chem. Chem. Phys. 2015; 17: 1151
  • 12 Kawai S, Yamaguchi T, Kato T, Hatano S, Abe J. Dyes Pigm. 2012; 92: 872
  • 13 Page MI. Angew. Chem. Int. Ed. 1977; 16: 449
    • 14a Åqvist J, Kazemi M, Isaksen GV, Brandsdal BO. Acc. Chem. Res. 2017; 50: 199
    • 14b Villà J, Štrajbl M, Glennon TM, Sham YY, Chu ZT, Warshel A. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 11899
  • 15 Sugimura T, Hagiya K, Sato Y, Tei T, Tai A, Okuyama T. Org. Lett. 2001; 3: 37
  • 16 Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 7299
  • 17 Aplander K, Lindström UM, Wennerberg J. Synthesis 2012; 44: 848
    • 18a Lewis FD, Johnson RW, Kory DR. J. Am. Chem. Soc. 1973; 95: 6470
    • 18b Lewis FD, Johnson RW, Kory DR. J. Am. Chem. Soc. 1974; 96: 6100
    • 19a Wagner PJ. Acc. Chem. Res. 1989; 22: 83
    • 19b Wagner PJ, Zand A, Park B.-S. J. Am. Chem. Soc. 1996; 118: 12856
  • 20 Sugimura T, Tei T, Mori A, Okuyama T, Tai A. J. Am. Chem. Soc. 2000; 122: 2128
  • 21 Benali O, Miranda MA, Tormos R, Gil S. J. Org. Chem. 2002; 67: 7915
  • 22 Inoue Y. Chem. Rev. 1992; 92: 741
  • 23 Oelgemöller M, Inoue Y. J. Photosci. 2003; 10: 71
    • 24a Inoue Y, Yamasaki N, Yokoyama T, Tai A. J. Org. Chem. 1992; 57: 1332
    • 24b Inoue Y, Yokoyama T, Yamasaki N, Tai A. J. Am. Chem. Soc. 1989; 111: 6480
    • 24c Inoue Y, Yokoyama T, Yamasaki N, Tai A. Nature 1989; 341: 225
  • 25 Maeda R, Wada T, Mori T, Kono S, Kanomata N, Inoue Y. J. Am. Chem. Soc. 2011; 133: 10379
  • 26 Tsuneishi H, Hakushi T, Tai A, Inoue Y. J. Chem. Soc., Perkin Trans. 2 1995; 2057
  • 27 Hoffmann R, Inoue Y. J. Am. Chem. Soc. 1999; 121: 10702
  • 28 Asaoka S, Horiguchi H, Wada T, Inoue Y. J. Chem. Soc., Perkin Trans. 2 2000; 737
  • 29 Asaoka S, Kitazawa T, Wada T, Inoue Y. J. Am. Chem. Soc. 1999; 121: 8486
    • 30a Kawanami Y, Katsumata S.-y, Nishijima M, Fukuhara G, Asano K, Suzuki T, Yang C, Nakamura A, Mori T, Inoue Y. J. Am. Chem. Soc. 2016; 138: 12187
    • 30b Kawanami Y, Umehara H, Mizoguchi J.-i, Nishijima M, Fukuhara G, Yang C, Mori T, Inoue Y. J. Org. Chem. 2013; 78: 3073
    • 30c Kawanami Y, Katsumata S.-y, Mizoguchi J.-i, Nishijima M, Fukuhara G, Yang C, Mori T, Inoue Y. Org. Lett. 2012; 14: 4962
  • 31 Bauer A, Alonso R. Phys. Sci. Rev. 2019; 4: 20170169
    • 32a Yang C, Inoue Y. Chem. Soc. Rev. 2014; 43: 4123
    • 32b Yan Z, Wu W, Yang C, Inoue Y. Supramol. Catal. 2015; 2: 9
  • 33 Mori T, Inoue Y. Chem. Soc. Rev. 2013; 42: 8122
    • 34a Saito H, Mori T, Wada T, Inoue Y. J. Am. Chem. Soc. 2004; 126: 1900
    • 34b Saito H, Mori T, Wada T, Inoue Y. Org. Lett. 2006; 8: 1909
    • 35a Matsumura K, Mori T, Inoue Y. J. Org. Chem. 2010; 75: 5461
    • 35b Matsumura K, Mori T, Inoue Y. J. Am. Chem. Soc. 2009; 131: 17076
  • 36 Nagasaki K, Inoue Y, Mori T. Aust. J. Chem. 2015; 68: 1693
  • 37 Nishiuchi E, Mori T, Inoue Y. J. Am. Chem. Soc. 2012; 134: 8082
    • 38a Liptrot DJ, Power PP. Nat. Rev. Chem. 2017; 1: 0004
    • 38b Grimme S, Hansen A, Brandenburg GJ, Bannwarth C. Chem. Rev. 2016; 116: 5105
    • 38c Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
    • 39a Kosaka T, Iwai S, Fukuhara G, Imai Y, Mori T. Chem. Eur. J. 2019; 25: 2011
    • 39b Kosaka T, Iwai S, Inoue Y, Moriuchi T, Mori T. J. Phys. Chem. A 2018; 122: 7455
    • 39c Toyoda M, Imai Y, Mori T. J. Phys. Chem. Lett. 2017; 8: 42
    • 39d Kosaka T, Inoue Y, Mori T. J. Phys. Chem. Lett. 2016; 7: 783
  • 40 Heller D, Buschmann H. Top. Catal. 1998; 5: 159
  • 41 Buschmann H, Scharf H.-D, Hoffmann N, Esser P. Angew. Chem. Int. Ed. 1991; 30: 477
  • 42 Ishikawa H, Chung TS, Fukuhara G, Shigemitsu H, Kida T, Bach T, Mori T. ChemPhotoChem 2019; 3: 243
  • 43 Inoue Y, Sugahara N, Wada T. Pure Appl. Chem. 2001; 73: 475
  • 44 Inoue Y, Wada T, Asaoka S, Sato H, Pete J.-P. Chem. Commun. 2000; 251