RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2022; 54(09): 2148-2156
DOI: 10.1055/s-0040-1719892
DOI: 10.1055/s-0040-1719892
feature
Brønsted Acid Catalyzed Direct Annulation of Alkoxyallenes and Naphthols to Chroman Ketals
Autor*innen
Financial support from the National Natural Science Foundation of China (21602231, 21772227) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20191197) is gratefully acknowledged.

Abstract
A straightforward Brønsted acid-catalyzed and scalable annulation of alkoxyallenes with simple naphthols was developed, affording chroman ketals in 49–84% yields. The versatile chroman ketals can be easily converted into coumarins by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated oxidation, and a series of 2-substituted chromans via nucleophilic substitutions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719892.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 01. Dezember 2021
Angenommen nach Revision: 20. Dezember 2021
Artikel online veröffentlicht:
14. Februar 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Chem. Rev. 2019; 119: 6509
- 1b Dauth A, Love JA. Chem. Rev. 2011; 111: 2010
- 1c Transition Metals in Organic Synthesis: A Practical Approach. Gibson SE. Oxford University Press; Oxford: 1997
- 2a Blieck R, Taillefer M, Monnier F. Chem. Rev. 2020; 120: 13545
- 2b Zimmer R, Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
- 2c Bras JL, Muzart J. Chem. Soc. Rev. 2014; 43: 3003
- 2d Muñoz MP. Chem. Soc. Rev. 2014; 43: 3164
- 2e Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45
- 2f Ma S. Chem. Rev. 2005; 105: 2829
- 3a Yang Z, Wang Z. Angew. Chem. Int. Ed. 2021; 60: 27288
- 3b Jang D.-J, Lee S, Lee J, Moon D, Rhee YH. Angew. Chem. Int. Ed. 2021; 60: 22166
- 3c Zheng J, Nikbakht A, Breit B. ACS Catal. 2021; 11: 3343
- 3d Jiang L, Jia T, Wang M, Liao J, Cao P. Org. Lett. 2015; 17: 1070
- 3e Lim W, Kim J, Rhee YH. J. Am. Chem. Soc. 2014; 136: 13618
- 3f Kim H, Lim W, Im D, Kim DG, Rhee YH. Angew. Chem. Int. Ed. 2012; 51: 12055
- 3g Kim H, Rhee YH. J. Am. Chem. Soc. 2012; 134: 4011
- 3h Trost BM, Xie J, Sieber JD. J. Am. Chem. Soc. 2011; 133: 20611
- 3i Trost BM, Jäkel C, Plietker B. J. Am. Chem. Soc. 2003; 125: 4438
- 3j Trost BM, Simas AB. C, Plietker B, Jäkel C, Xie J. Chem. Eur. J. 2005; 11: 7075
- 3k Trost BM, Xie J. J. Am. Chem. Soc. 2006; 128: 6044
- 3l Trost BM, Xie J. J. Am. Chem. Soc. 2008; 130: 6231
- 4 Zhou H, Wei Z, Zhang J, Yang H, Xia C, Jiang G. Angew. Chem. Int. Ed. 2017; 56: 1077
- 5a Harvey RG, Cortez C, Ananthanarayan TP, Sanford S. J. Org. Chem. 1988; 53: 3936
- 5b Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
- 5c Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev. 2013; 42: 3489
- 6 Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
For reviews, see: