Synthesis 2022; 54(11): 2548-2560
DOI: 10.1055/s-0040-1719902
short review

Recent Developments in N2-Selective Functionalizations of 1,2,3-Triazoles

Yue Zheng
a   Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. of China
,
Lifang Tian
a   Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. of China
,
Velayudham Ramadoss
a   Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. of China
,
Hui Zhang
b   School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou, 466001, P. R. of China
,
Li-Li Zhu
b   School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou, 466001, P. R. of China
,
Yahui Wang
a   Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. of China
› Author Affiliations
We acknowledge the National Natural Science Foundation of China (22001272), the Science and Technology Research Project of Henan Province (202102210230), Young and Middle-Aged Backbone Teachers Plan of Zhoukou Normal University, and Nanjing Tech University for financial support.


Abstract

The widespread use of 1,2,3-triazole compounds in drugs has resulted in a great interest in the efficient synthesis of N2-substituted 1,2,3-triazoles via post triazole functionalization methods. At present, there are many methods for the synthesis of N1-substituted 1,2,3-triazole compounds, but the development of convenient methods for the N2-selective functionalization of 1,2,3-triazoles remains challenging. In general, the greater stability of the N1 tautomer makes the N2 position a non-preferable reactive site, which has limited the application of 1,2,3-triazoles. In this review, we summarized advances in the direct N2-selective functionalization of 1,2,3-triazoles since 2008.

1 Introduction

2 N2-Alkylation

3 N2-Allylation

4 N2-Propargylation

5 N2-Alkenylation

6 N2-Alkynylation

7 N2-Arylation

8 Conclusions and Outlook



Publication History

Received: 16 December 2021

Accepted after revision: 17 January 2022

Article published online:
01 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications, 2nd ed. Eicher T, Hauptmann S, Speicher A. Wiley-VCH; Weinheim: 2003
    • 1b Golas PL, Matyjaszewski K. Chem. Soc. Rev. 2010; 39: 1338
    • 1c Chen X.-X, Niu L.-Y, Shao N, Yang Q.-Z. Anal. Chem. 2019; 91: 4301
    • 1d Saha P, Panda D, Dash J. Chem. Commun. 2019; 55: 731
    • 1e Chen L, Keller LJ, Cordasco E, Bogyo M, Lentz CS. Angew. Chem. Int. Ed. 2019; 58: 5643
    • 1f Liu E.-C, Topczewski JJ. J. Am. Chem. Soc. 2019; 141: 5135
    • 1g Shao X, Tian L, Wang Y. Eur. J. Org. Chem. 2019; 2019: 4089
    • 1h Shao X, Zheng Y, Tian L, Martín-Torres I, Echavarren AM, Wang Y. Org. Lett. 2019; 21: 9262
    • 1i Xu Z, Zheng Y, Wang Z, Shao X, Tian L, Wang Y. Chem. Commun. 2019; 55: 15089
    • 1j Sainas S, Temperini P, Farnsworth JC, Møllerud F, Yi S, Jensen AA, Nielsen B, Passoni A, Kastrup JS, Hansen KB, Boschi D, Pickering DS, Clausen RP, Lolli ML. J. Med. Chem. 2019; 62: 4467
    • 1k Taemaitree L, Shivalingam A, El-Sagheer AH, Brown T. Nat. Commun. 2019; 10: 1610
  • 2 Dheer D, Singh V, Shankar R. Bioorg. Chem. 2017; 71: 30
    • 3a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 3b Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302

      For selected examples on N1-substituted 1,2,3-triazoles, see:
    • 4a John J, Thomas J, Dehaen W. Chem. Commun. 2015; 51: 10797
    • 4b Fantoni NZ, El-Sagheer AH, Brown T. Chem. Rev. 2021; 121: 7122
    • 4c Yan W, Wang Q, Chen Y, Petersen JL, Shi X. Org. Lett. 2010; 12: 3308
    • 4d Sun K, Lv Y, Shi Z, Mu S, Li C, Wang X. Org. Biomol. Chem. 2017; 15: 5258
    • 4e Berthold D, Breit B. Org. Lett. 2018; 20: 598
    • 4f Yang J, Duan J, Wang G, Zhou H, Ma B, Wu C, Xiao J. Org. Lett. 2020; 22: 7284
    • 4g Zhao Y, Mandal D, Guo J, Wu Y, Stephan DW. Chem. Commun. 2021; 57: 7758
    • 4h Vemuri PY, Patureau FW. Org. Lett. 2021; 23: 3902
    • 5a Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
    • 5b Ping L, Chung DS, Bouffard J, Lee S.-g. Chem. Soc. Rev. 2017; 46: 4299
    • 6a Wofford DS, Forkey DM, Russell JG. J. Org. Chem. 1982; 47: 5132
    • 6b Lunazzi L, Parisi F. J. Chem. Soc., Perkin Trans. 2 1984; 1025
    • 6c Tomas F, Abboud JL. M, Laynez J, Notario R, Santos L, Nilsson SO, Catalan J, Claramunt RM, Elguero J. J. Am. Chem. Soc. 1989; 111: 7348
    • 6d Dale HJ. A, Hodges GR, Lloyd-Jones GC. J. Am. Chem. Soc. 2019; 141: 7181
    • 6e Belskaya N, Subbotina J, Lesogorova S. Top. Heterocycl. Chem. 2015; 40: 51
    • 7a Schulze B, Schubert US. Chem. Soc. Rev. 2014; 43: 2522
    • 7b Cai R, Yan W, Bologna MG, Silva K, Ma Z, Finklea HO, Petersen JL, Li M, Shi X. Org. Chem. Front. 2015; 2: 141
    • 7c Chen Y, Wu J, Ma S, Zhou S, Meng X, Jia L, Pan Z. J. Mol. Struct. 2015; 1089: 1
    • 7d Shi SP, Kuang CX. J. Org. Chem. 2014; 79: 6105
    • 7e Lv Y, Zhu L, Liu H, Wu Y, Chen Z, Fu H, Tian Z. Anal. Chim. Acta 2014; 839: 74
    • 7f Liu H, Ding H, Zhu L, Wang Y, Chen Z, Tian Z. J. Fluoresc. 2015; 25: 1259
    • 7g Jo J, Lee HY, Liu W, Olasz A, Chen C.-H, Lee D. J. Am. Chem. Soc. 2012; 134: 16000
    • 7h Gavlik KD, Sukhorukova ES, Shafran YM, Slepukhin PA, Benassi E, Belskaya NP. Dyes Pigm. 2017; 136: 229
    • 8a Yan W, Wang Q, Lin Q, Li M, Petersen JL, Shi X. Chem. Eur. J. 2011; 17: 5011
    • 8b Zhang Y, Ye X, Petersen JL, Li M, Shi X. J. Org. Chem. 2015; 80: 3664
    • 8c Peng K, Mawamba V, Schulz E, Löhr M, Hagemann C, Schatzschneider U. Inorg. Chem. 2019; 58: 11508
    • 8d Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo HY, Gao F, Zhu Z, Jen AK.-Y. J. Am. Chem. Soc. 2021; 143: 2665
    • 9a Watanabe T, Umezawa Y, Takahashi Y, Akamatsu Y. Bioorg. Med. Chem. Lett. 2010; 20: 5807
    • 9b Shi A, Wang D, Wang H, Wu Y, Tian H, Guan Q, Bao K, Zhang W. RSC Adv. 2016; 6: 114879
    • 9c Mangion IK, Sherry BD, Yin J, Fleitz FJ. Org. Lett. 2012; 14: 3458
    • 9d Das J, Rao CV. L, Sastry TV. R. S, Roshaiah M, Sankar PG, Khadeer A, Kumar MS, Mallik A, Selvakumar N, Iqbal J, Trehan S. Bioorg. Med. Chem. Lett. 2005; 15: 337
    • 9e Bretner M, Baier A, Kopanskal K, Najda A, Schoof A, Reinholz M, Lipniacki A, Piasek A, Kulikowski T, Borowski P. Antiviral Chem. Chemother. 2005; 16: 315
    • 9f Dixit PP, Patil VJ, Nair PS, Jain S, Sinha N, Arora SK. Eur. J. Med. Chem. 2006; 41: 423
    • 9g Carta A, Loriga M, Piras S, Paglietti G, Ferrone M, Fermeglia M, Pricl S, Colla PL, Collu G, Sanna T, Loddo R. Med. Chem. 2007; 3: 520
    • 9h Rezaei Z, Khabnadideh S, Pakshir K, Hossaini Z, Amiri F, Assadpour E. Eur. J. Med. Chem. 2009; 44: 3064
    • 10a de Souza RO. M. A, Miranda LS. M. An. Acad. Bras. Cienc. 2019; 91: e20180751
    • 10b D’Anna F, Frenna V, Lanza CZ, Macaluso G, Marullo S, Spinelli D, Spisani R, Petrillo G. Tetrahedron 2010; 66: 5442
    • 10c Belskaya NP, Koksharov AV, Lesogorova SG, Slepukhin PA, Bakulev VA. Russ. Chem. Bull. Int. Ed. 2011; 60: 889
    • 10d D’Anna F, Marullo S, Vitale P, Noto R. Eur. J. Org. Chem. 2011; 2011: 5681
    • 10e D’Auria M, Frenna V, Marullo S, Raccioppi R, Spinelli D, Viggiani L. Photochem. Photobiol. Sci. 2012; 11: 1383
    • 11a Guru MM, Punniyamurthy T. J. Org. Chem. 2012; 77: 5063
    • 11b Chevallier F, Blin T, Nagaradja E, Lassagne F, Roisnel T, Halauko YS, Matulis VE, Ivashkevich OA, Mongin F. Org. Biomol. Chem. 2012; 10: 4878
    • 11c Stewart S, Harris R, Jamieson C. Synlett 2014; 25: 2480
    • 11d Wu L, Guo S, Wang X, Guo Z, Yao G, Lin Q, Wu M. Tetrahedron Lett. 2015; 56: 2145
    • 11e Gavlik KD, Lesogorova SG, Sukhorukova ES, Subbotina JO, Slepukhin PA, Benassi E, Belskaya NP. Eur. J. Org. Chem. 2016; 2016: 2700
    • 12a Liu G.-B, Zhao H.-Y, Yang H.-J, Gao X, Li M.-K, Thiemann T. Adv. Synth. Catal. 2007; 349: 1637
    • 12b Dong J, Jin B, Sun P. Org. Lett. 2014; 16: 4540
    • 12c Shang X, Zhao S, Chen W, Chen C, Qiu H. Chem. Eur. J. 2014; 20: 1825
    • 12d Liu Q.-L, Wen D.-D, Hang C.-C, Li Q.-L, Zhu Y.-M. Helv. Chim. Acta 2010; 93: 1350
    • 12e Zhou J, He J, Wang B, Yang W, Ren H. J. Am. Chem. Soc. 2011; 133: 6868
    • 12f Ryu T, Min J, Choi W, Jeon WH, Lee PH. Org. Lett. 2014; 16: 2810
    • 12g Khatun N, Modi A, Ali W, Patel BK. J. Org. Chem. 2015; 80: 9662
    • 12h Li J, Zhou H, Zhang J, Yang H, Jiang G. Chem. Commun. 2016; 52: 9589
    • 12i Eltyshev AK, Suntsova PO, Karmatskaia KD, Taniya OS, Slepukhin PA, Benassi E, Belskaya NP. Org. Biomol. Chem. 2018; 16: 9420
    • 12j Wirtanen T, Rodrigo E, Waldvogel SR. Chem. Eur. J. 2020; 26: 5592
    • 13a Liu Z, Ji H, Gao W, Zhu G, Tong L, Lei F, Tang B. Chem. Commun. 2017; 53: 6259
    • 13b Zhu C, Zeng H, Chen F, Liu C, Zhu R, Wu W, Jiang H. Org. Chem. Front. 2018; 5: 571
    • 13c Zhu C, Zeng H, Chen F, Liu C, Jiang H. Adv. Synth. Catal. 2019; 361: 5149
    • 13d Wu P, He Y, Wang H, Zhou Y.-G, Yu Z. Org. Lett. 2020; 22: 310
    • 13e Feng F.-F, Li J.-K, Liu X.-Y, Zhang F.-G, Cheung CW, Ma J.-A. J. Org. Chem. 2020; 85: 10872
    • 13f Liu H.-N, Cao H.-Q, Cheung CW, Ma J.-A. Org. Lett. 2020; 22: 1396
  • 14 Chen Y, Liu Y, Petersen JL, Shi X. Chem. Commun. 2008; 3254
  • 15 Wang X.-J, Sidhu K, Zhang L, Campbell S, Haddad N, Reeves DC, Krishnamurthy D, Senanayake CH. Org. Lett. 2009; 11: 5490
  • 16 Wang X.-J, Zhang L, Krishnamurthy D, Senanayake CH, Wipf P. Org. Lett. 2010; 12: 4632
  • 17 Motornov VA, Tabolin AA, Novikov RA, Nelyubina YV, Ioffe SL, Smolyar IV, Nenajdenko VG. Eur. J. Org. Chem. 2017; 2017: 6851
  • 18 Yan W, Liao T, Tuguldur O, Zhong C, Petersen JL, Shi X. Chem. Asian J. 2011; 6: 2720
  • 19 Shi JW, Zhu LL, Wen J, Chen Z. Chin. J. Catal. 2016; 37: 1222
  • 20 Jiang Y, Wang Q, Sun R, Tang X.-Y, Shi M. Org. Chem. Front. 2016; 3: 744
  • 21 Sun R, Zhang D.-H, Shi M. Synlett 2014; 25: 2293
  • 22 Kalisiak J, Sharpless KB, Fokin VV. Org. Lett. 2008; 10: 3171
  • 23 Zhu L.-L, Xu X.-Q, Shi J.-W, Chen B.-L, Chen Z. J. Org. Chem. 2016; 81: 3568
  • 24 Wen J, Zhu L.-L, Bi Q.-W, Shen Z.-Q, Li X.-X, Li X, Wang Z, Chen Z. Chem. Eur. J. 2014; 20: 974
  • 25 Wang K, Chen P, Ji D, Zhang X, Xu G, Sun J. Angew. Chem. Int. Ed. 2018; 57: 12489
  • 26 Bhagat UK, Peddinti RK. J. Org. Chem. 2018; 83: 793
  • 27 Li Z, Wei Q, Song L, Han W, Wu X, Zhao Y, Xia F, Liu S. Org. Lett. 2019; 21: 6413
  • 28 Zhu L.-L, Tian L, Zhang H, Xiao L, Luo W, Cai B, Wang H, Wang C, Liu G, Pei C, Wang Y. Adv. Synth. Catal. 2019; 361: 1117
  • 29 Yahata K, Kaneko Y, Akai S. Org. Lett. 2020; 22: 598
  • 30 Song Q, Zhang P, Liang S, Chen X, Li P, Li W. Org. Lett. 2020; 22: 7859
  • 31 Zhu L.-L, Tian L, Cai B, Liu G, Zhang H, Wang Y. Chem. Commun. 2020; 56: 2979
  • 32 Tang S, Yu J, Shao Y, Sun J. Org. Chem. Front. 2021; 8: 278
  • 33 Xu K, Thieme N, Breit B. Angew. Chem. Int. Ed. 2014; 53: 7268
  • 34 Sergeieva T, Hamlin TA, Okovytyy S, Breit B, Bickelhaupt FM. Chem. Eur. J. 2020; 26: 2342
  • 35 Man X, Liu YC, Li XX, Zhao ZG. New J. Chem. 2019; 43: 14739
  • 36 Duan H, Yan W, Sengupta S, Shi X. Bioorg. Med. Chem. Lett. 2009; 19: 3899
  • 37 Yan W, Ye X, Weise K, Petersen JL, Shi X. Chem. Commun. 2012; 48: 3521
  • 38 Zhang Z, Chang L, Wang S, Wang H, Yao Z.-J. RSC Adv. 2013; 3: 18446
  • 39 Motornov V, Latyshev GV, Kotovshchikov YN, Lukashev NV, Beletskaya IP. Adv. Synth. Catal. 2019; 361: 3306
  • 40 Wang X, Wang Q, Xue Y, Sun K, Wu L, Zhang B. Chem. Commun. 2020; 56: 4436
  • 41 Kitamura T, Morshed MH, Tsukada S, Miyazaki Y, Iguchi N, Inoue D. J. Org. Chem. 2011; 76: 8117
  • 42 Liu Y, Yan W, Chen Y, Petersen JL, Shi X. Org. Lett. 2008; 10: 5389
  • 43 Li J, Wang D, Zhang Y, Li J, Chen B. Org. Lett. 2009; 11: 3024
  • 44 Wang X.-J, Zhang L, Lee H, Haddad N, Krishnamurthy D, Senanayake CH. Org. Lett. 2009; 11: 5026
  • 45 Ueda S, Su M, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 8944
  • 46 Ueda S, Ali S, Fors BP, Buchwald SL. J. Org. Chem. 2012; 77: 2543
  • 47 Lopes AB, Wagner P, de Souza RO. M. A, Germain NL, Uziel J, Bourguignon J.-J, Schmitt M, Miranda LS. M. J. Org. Chem. 2016; 81: 4540
  • 48 Gu C.-X, Bi Q.-W, Gao C.-K, Wen J, Zhao Z.-G, Chen Z. Org. Biomol. Chem. 2017; 15: 3396
  • 49 Roshandel S, Lunn MJ, Rasul G, Ravinson DS. M, Suri SC, Prakash GK. S. Org. Lett. 2019; 21: 6255