Synlett 2022; 33(14): 1353-1356
DOI: 10.1055/s-0040-1719911
cluster
Organic Chemistry in Thailand

Synthesis of (Z)-Cinnamate Esters by Nickel-Catalyzed Stereoinvertive Deoxygenation of trans-3-Arylglycidates

Sunisa Akkarasamiyo
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
,
Saranya Chitsomkhuan
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
,
Supawadee Buakaew
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
,
Joseph S. M. Samec
b   Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
,
Pitak Chuawong
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
,
Punlop Kuntiyong
c   Department of Chemistry, Faculty of Science, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000, Thailand
› Author Affiliations
This work was funded by Kasetsart University Research and Development Institute (KURDI; R-M 9.64).


Abstract

We report a stereoinvertive deoxygenation of trans-3-arylglycidates as an alternative route to access thermodynamically less stable (Z)-cinnamate esters by using nickel triflate and triphenylphosphine. Broad functional-group tolerance was observed, with trans-3-arylglycidates containing methyl, methoxy, halo, or nitro groups affording the corresponding (Z)-cinnamate esters in high yields and with moderate to high E/Z ratios.

Supporting Information



Publication History

Received: 31 January 2022

Accepted after revision: 01 March 2022

Article published online:
21 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Young JR, Eid R, Turner C, DeVita RJ, Kurtz MM, Tsao K.-LC, Chicchi GG, Wheeldon A, Carlson E, Mills SG. Bioorg. Med. Chem. Lett. 2007; 17: 5310
    • 1b Koskinen AM. P, Karvinen EK, Siirilä JP. J. Chem. Soc., Chem. Commun. 1994; 21
    • 1c Roche SP, Cencic R, Pelletier J, Porco JA. Jr. Angew. Chem. Int. Ed. 2010; 49: 6533
    • 1d Zhdanko A, Schmauder A, Ma CI, Sibley LD, Sept D, Sasse F, Maier ME. Chem. Eur. J. 2011; 17: 13349
    • 2a Tang K, Jiang Y, Zhang H, Huang W, Xie Y, Deng C, Xu H, Song X, Xu H. Bioorg. Chem. 2021; 106: 104512
    • 2b Park PJ, Cho E.-G. Int. J. Mol. Sci. 2019; 20: 1859
    • 2c Christina VS, Sundaram RL, Sivamurugan V, Kumar DT, Mohanapriya CD, Shailaja VL, Thyagarajan SP, Doss CG. P, Gnanambal KM. E. Sci. Rep. 2021; 11: 11451
    • 2d Kalappurakkal VN, Bhattacharya D, Chakravarty S, Uppuluri MV. Chem. Biodiversity 2018; 15: e1800008
    • 3a Pierce BM, Simpson BF, Ferguson KH, Whittaker RE. Org. Biomol. Chem. 2018; 16: 6659
    • 3b Seifert F, Drikermann D, Steinmetzer J, Zi Y, Kupfer S, Vilotijevic I. Org. Biomol. Chem. 2021; 19: 6092
    • 4a Touchard FP. Tetrahedron Lett. 2004; 45: 5519
    • 4b Kokin K, Motoyoshiya J, Hayashi S, Aoyama H. Synth. Commun. 1997; 27: 2387
  • 5 Metternich JB, Gilmour R. J. Am. Chem. Soc. 2015; 137: 11254
    • 6a Cruché C, Neiderer W, Collins SK. ACS Catal. 2021; 11: 8829
    • 6b Hauptmann R, Petrosyan A, Fennel F, Argüello Cordero MA, Surkus A.-E, Pospech J. Chem. Eur. J. 2019; 25: 4325
    • 6c Shu P, Xu H, Zhang L, Li J, Liu H, Luo Y, Yang X, Ju Z, Xu Z. SynOpen 2019; 3: 103
  • 7 Mori T, Takeuchi Y, Hojo M. Tetrahedron Lett. 2020; 61: 151518
  • 8 Yu J, Zhou Y, Lin Z, Tong R. Org. Lett. 2016; 18: 4734
  • 9 Lamb JR, Hubbell AK, MacMillan SN, Coates GW. J. Am. Chem. Soc. 2020; 142: 8029
  • 10 Asako S, Sakae T, Murai M, Takaia K. Adv. Synth. Catal. 2016; 358: 3966
  • 11 Akkarasamiyo S, Sawadjoon S, Orthaber A, Samec JS. M. Chem. Eur. J. 2018; 24: 3488
    • 12a Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 12b Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 13a Liu X.-W, Echavarren J, Zarate C, Martin R. J. Am. Chem. Soc. 2015; 137: 12470
    • 13b Böhm VP. W, Weskamp T, Gstöttmayr CW. K, Herrmann WA. Angew. Chem. Int. Ed. 2000; 39: 1602
    • 13c Yamamoto T. Chem. Lett. 2012; 41: 1422
    • 14a Sousa SC. A, Fernandes AC. Tetrahedron Lett. 2016; 57: 520
    • 14b Morandi B, Carreira EM. Synlett 2009; 2076
  • 15 Wu L, Yang G, Zhang W. CCS Chem. 2019; 1: 623
  • 16 (Z)-Cinnamates 2al; General Procedure A dried tube was charged with Ni(OTf)2 (5 mol%) and PPh3 (2 equiv), then capped and flushed with argon. A solution of trans-3-arylglycidates 1 (1 mmol) in toluene (4 mL) was added and the mixture was stirred at 80 °C for 18 h. The solvent was evaporated under reduced pressure and the mixture was then purified by column chromatography (silica gel, hexane then EtOAc–hexane gradient). Methyl (Z)-Cinnamate (2a) Colorless oil; yield: 114 mg (70%). 1H NMR (400 MHz, CDCl3): δ = 7.65–7.57 (m, 2 H), 7.44–7.31 (m, 3 H), 6.96 (d, J = 12.6 Hz, 1 H), 5.97 (d, J = 12.6 Hz, 1 H), 3.72 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.6, 143.4, 134.8, 129.8 (2 C), 129.1, 128.1 (2 C), 119.3, 51.4. HRMS (ESI): m/z [M + Na]+ calcd for C10H10NaO2: 185.0573; found: 185.0573