Synthesis 2022; 54(03): 667-682
DOI: 10.1055/s-0040-1720921
paper

Visible-Light-Promoted Radical Cyclization of N-Arylvinylsulfonamides: Synthesis of CF3/CHF2/CH2CF3-Containing 1,3-Dihydrobenzo[c]isothiazole 2,2-Dioxide Derivatives

Devaiah Vytla
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bengaluru, Karnataka 560100, India
,
Kumargurubaran Kaliyaperumal
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bengaluru, Karnataka 560100, India
,
Rajeswari Velayuthaperumal
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bengaluru, Karnataka 560100, India
,
Parinita Shaw
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bengaluru, Karnataka 560100, India
,
Raj Gautam
b   Analytical Research and Development, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bengaluru, Karnataka 560100, India
,
Arvind Mathur
c   Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543-40, USA
,
Amrita Roy
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra-Jigani Road, Bengaluru, Karnataka 560100, India
› Author Affiliations


Abstract

A photocatalyzed and highly efficient trifluoromethylation of N-arylvinylsulfonamides using commercially available CF3SO2Cl as the trifluoromethyl radical source under blue LEDs is reported. The reaction proceeds through radical cyclization under mild conditions. An investigation of the substrate scope is performed to establish a general, synthetically useful protocol for the synthesis of novel trifluoromethylated 1,3-dihydrobenzo[c]isothiazole 2,2-dioxides in moderate to high yields. This method is also successfully applied for the synthesis of difluoromethylated and trifluoroethylated 1,3-dihydrobenzo[c]isothiazole 2,2-dioxides in good to excellent yields.

Supporting Information



Publication History

Received: 12 July 2021

Accepted after revision: 16 September 2021

Article published online:
26 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1c Wang J, Sanchez-Rosello M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1d Kar SS, Thomas CA. Curr. Drug Ther. 2019; 14: 114
    • 1e Caron S. Org. Process Res. Dev. 2020; 24: 470
    • 1f Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 1g Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 1h Geri JB, Wolfe MM. W, Szymczak NK. J. Am. Chem. Soc. 2018; 140: 9404
    • 2a Umemoto T. Chem. Rev. 1996; 96: 1757
    • 2b Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2c Mu X, Wu T, Wang H.-Y, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 2d Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
    • 2e Wei W, Wen J, Yang D, Liu X, Guo M, Dong R, Wang H. J. Org. Chem. 2014; 79: 4225
    • 2f Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 2g Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 2h Tan X, Liu Z, Shen H, Zhang P, Zhang Z, Li C. J. Am. Chem. Soc. 2017; 139: 12430
    • 2i Imiołek M, Karunanithy G, Ng W.-L, Baldwin AJ, Gouverneur V, Davis BG. J. Am. Chem. Soc. 2018; 140: 1568
    • 2j Kautzky JA, Wang T, Evans RW, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 6522
    • 2k Koike T, Akita M. Org. Biomol. Chem. 2019; 17: 5413
    • 3a Fu W, Guo W, Zou G, Xu C. J. Fluorine Chem. 2012; 140: 88
    • 3b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 3c Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. ACS Catal. 2014; 4: 2530
    • 3d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 3e Park GY, Choi Y, Choi MG, Chang SK, Cho EJ. Asian J. Org. Chem. 2017; 6: 436
    • 3f Noto N, Koike T, Akita M. Chem. Sci. 2017; 8: 6375
    • 3g Marzo L, Pagire SK, Reiser O, Konig B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 3h Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 3i Noto N, Tanaka Y, Koike T, Akita M. ACS Catal. 2018; 8: 9408
    • 3j Zhu M, Zhou K, Zhang X, You S.-L. Org. Lett. 2018; 20: 4379
    • 3k Ghiazza C, Monnereau C, Khrouz L, Médebielle M, Billard T, Tlili A. Synlett 2019; 30: 777
    • 3l Nguyen T.-TH, O’Brien CJ, Tran ML. N, Olson SH, Settineri NS, Prusiner SB, Paras NA, Conrad J. Org. Lett. 2021; 23: 3823
    • 4a Cao X.-H, Pan X, Zhou P.-J, Zou J.-P, Asekun OT. Chem. Commun. 2014; 50: 3359
    • 4b Fang Z, Ning Y, Mi P, Liao P, Bi X. Org. Lett. 2014; 16: 1522
    • 4c Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C. Chem. Eur. J. 2013; 19: 14039
    • 4d Tang X.-J, Thomoson CS, Dolbier WR. Jr. Org. Lett. 2014; 16: 4594
    • 4e Lu M, Liu Z, Zhang J, Tian Y, Qin H, Huang M, Hu S, Cai S. Org. Biomol. Chem. 2018; 16: 6564
    • 4f Meng N, Wang L, Liu Q, Li Q, Lv Y, Yue H, Wang X, Wei W. J. Org. Chem. 2020; 85: 6888
    • 4g Lu K, Lei L, Wei Q, Zhou T, Jia X, Li Q, Zhao X. Tetrahedron Lett. 2021; 67: 152864
    • 5a Chachignon H, Guyon H, Cahard D. Beilstein J. Org. Chem. 2017; 13: 2800
    • 5b Chaudhary R, Natarajan P. ChemistrySelect 2017; 2: 6458
    • 5c Chen L, Wu L, Duan W, Wang T, Li L, Zhang K, Zhu J, Peng Z, Xiong F. J. Org. Chem. 2018; 83: 8607
    • 5d Chandu P, Ghosh KG, Sureshkumar D. J. Org. Chem. 2019; 84: 8771
    • 6a Moon J, Moon YK, Park DD, Choi S, You Y, Cho EJ. J. Org. Chem. 2019; 84: 12925
    • 6b Wang P, Zhu S, Lu D, Gong Y. Org. Lett. 2020; 22: 1924
    • 6c Yuan X, Duan X, Cui Y.-S, Sun Q, Qin L.-Z, Zhang X.-P, Liu J, Wu M.-Y, Qiu J.-K, Guo K. Org. Lett. 2021; 23: 1950
    • 6d Chun J, Zhang H, Meng F, Guo K, Cao S, Fang Q, Li J, Zhu Y. Adv. Synth. Cat. 2021; 363: 751
    • 7a Wells GJ, Tao M, Josef KA, Bihovsky R. J. Med. Chem. 2001; 44: 3488
    • 7b Cherney RJ, Duan JJ.-W, Voss ME, Chen L, Wang L, Meyer DT, Wasserman ZR, Hardman KD, Liu R.-Q, Covington MB, Qian M, Mandlekar S, Christ DD, Trzaskos JM, Newton RC, Magolda RL, Wexler RR, Decicco CP. J. Med. Chem. 2003; 46: 1811
    • 7c Wang Y, Busch-Petersen J, Wang F, Ma L, Fu W, Kerns JK, Jin J, Palovich MR, Shen J.-K, Burman M, Foley JJ, Schmidt DB, Hunsberger GE, Sarau HM, Widdowson KL. Bioorg. Med. Chem. Lett. 2007; 17: 3864
    • 8a Li X, Dong Y, Qu F, Liu G. J. Org. Chem. 2015; 80: 790
    • 8b Rassadin VA, Scholz M, Klochkova AA, Meijere AD, Sokolov VV. Beilstein J. Org Chem. 2017; 13: 1932
    • 8c Zhong D, Wu D, Zhang Y, Lu Z, Usman M, Liu W, Lu X, Liu W.-B. Org. Lett. 2019; 21: 5808
    • 8d Yang Z, Xu J. Chem. Commun. 2014; 50: 3616
    • 8e Huang P, Yang Z, Xu J. Tetrahedron 2017; 73: 3255
    • 8f Hu Y, Lang K, Li C, Gill JB, Kim I, Lu H, Fields KB, Marshall M, Cheng Q, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 18160
    • 8g Majumdar KC, Mondal S. Chem. Rev. 2011; 111: 7749
    • 8h Szostak M, Aude J. Chem. Rev. 2013; 113: 5701
    • 8i Zhao Q.-Q, Hu X.-Q. Molecules 2020; 25: 4367
    • 9a Abdiaj I, Bottecchia C, Alcazar J, Noёl T. Synthesis 2017; 49: 4978
    • 9b Ding B, Weng Y, Liu Y, Song C, Yin L, Yuan J, Ren Y, Lei A, Chiang C.-W. Eur. J. Org. Chem. 2019; 46: 7596
  • 10 Gao F, Yang C, Gao G.-L, Zheng L, Xia W. Org. Lett. 2015; 17: 3478
    • 11a Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
    • 11b Wang H, Zhang J, Shi J, Li F, Zhang S, Xu K. Org. Lett. 2019; 21: 5116
    • 12a Moutrille C, Zard SZ. Tetrahedron Lett. 2004; 45: 4631
    • 12b Zhu M, Zhang C, Nwachukwu JC, Srinivasan S, Cavett V, Zheng Y, Carlson KE, Dong C, Katzenellenbogen JA, Nettles KW, Zhou H.-B. Org. Biomol. Chem. 2012; 10: 8692
    • 12c Huang R, Li Z, Ren P, Chen W, Kuang Y, Chen J, Zhan Y, Chen H, Jiang B. Eur. J. Org. Chem. 2018; 829
  • 13 Yuan X, Zheng M.-W, Di Z.-C, Cui Y.-S, Zhuang K.-Q, Qin L.-Z, Fang Z, Qiu J.-K, Li G, Guo K. Adv. Synth. Catal. 2019; 361: 1835
  • 14 Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 15a Lin Q.-Y, Ran Y, Xu X.-H, Qing F.-L. Org. Lett. 2016; 18: 2419
    • 15b Lu K, Zhou T, Jia X, Wei P, Lei L, Xi X, Liu J, Zhao X. Asian J. Org. Chem. 2021; 10: 563
    • 15c Yang J, Zhu S, Wang F, Qing F.-L, Chu L. Angew. Chem. Int. Ed. 2021; 60: 4300
    • 15d Peng L, Wang H, Guo C. J. Am. Chem. Soc. 2021; 143: 6376
    • 16a Zhu M, Han X, Fu W, Wang Z, Ji B, Hao X.-Q, Song M.-P, Xu C. J. Org. Chem. 2016; 81: 7282
    • 16b Pan X.-Y, Zhao Y, Qu H.-A, Lin J.-H, Hang X.-C, Xiao J.-C. Org. Chem. Front. 2018; 5: 1452
    • 16c Zhao K, Zhang Z.-Y, Cui X.-L, Wang Y.-X, Wu X.-D, Li W.-M, Wu J.-X, Zhao L.-L, Guo J.-Y, Loh T.-P. Org. Lett. 2020; 22: 9029
    • 16d Chen X, Li L, Pei C, Li J, Zou D, Wu Y, Wu Y. J. Org. Chem. 2021; 86: 2772