Synthesis 2023; 55(05): 707-718
DOI: 10.1055/s-0042-1751387
short review

Mechanistic and Synthetic Studies of Biaryl Birch Reductions

This work was partly supported by the US National Science Foundation (CHE-1955758).


Abstract

The Birch reduction of biaryls generally converts one of the two arenes into a cyclohexa-1,4-diene. Biaryls are more reactive than monocyclic arenes under the Birch conditions. Unlike the reduction of monocyclic arenes, biaryl reduction proceeds through two consecutive electron transfer steps before the protonation of the dianion intermediate. The biaryl reductions and subsequent alkylations in one pot rapidly increase the molecular complexity and thus have been used in the synthesis of natural products and drug-like molecules.

1 Introduction

2 The Physical Organic Chemistry of the Birch Reduction of Biaryls

3 Biaryls as the Mediators of Electron Transfer

4 Methods for the Dissolving-Metal Reduction of Biaryls

5 Intercepting the Biaryl Reduction Intermediates with Electrophiles

6 Synthetic Applications of the Dissolving-Metal-Mediated Reductions of Biaryls

7 Outlook



Publication History

Received: 30 August 2022

Accepted after revision: 27 October 2022

Article published online:
22 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wooster CB, Godfrey KL. J. Am. Chem. Soc. 1937; 59: 596
  • 2 Birch AJ. J. Chem. Soc. 1944; 430
  • 3 Rabideau PW. Adv. Chem. Ser. 1988; 73
  • 4 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 5 Stille JK. Angew. Chem. Int. Ed. Engl. 1986; 25: 508
  • 6 King AO, Okukado N, Negishi EI. J. Chem. Soc., Chem. Commun. 1977; 683
  • 7 Meerholz K, Heinze J. J. Am. Chem. Soc. 1989; 111: 2325
  • 8 Lindow DF, Cortez CN, Harvey RG. J. Am. Chem. Soc. 1972; 94: 5406
  • 9 Hofmann JE, Argabright PA, Schriesheim A. Tetrahedron Lett. 1964; 5: 1005
  • 10 Hoijtink GJ, Deboer E, Vandermeij PH, Weijland WP. Recl. Trav. Chim. Pays-Bas 1956; 75: 487
  • 11 Bondarchuk SV, Carrera M, de la Viuda M, Guijarro A. New J. Chem. 2018; 42: 5168
  • 12 Donohoe TJ, Sintim HO, Sisangia L, Ace KW, Guyo PM, Cowley A, Harling JD. Chem. Eur. J. 2005; 11: 4227
  • 13 Rees NV, Baron R, Kershaw NM, Donohoe TJ, Compton RG. J. Am. Chem. Soc. 2008; 130: 12256
  • 14 Donohoe TJ, Kershaw NM, Baron R, Compton RG. Tetrahedron 2009; 65: 5377
  • 15 Donohoe TJ, Sintim HO. Org. Lett. 2004; 6: 2003
  • 16 Hückel W, Schwen R. Chem. Ber. 1956; 89: 150
  • 17 Grisdale PJ, Regan TH, Doty JC, Figueras J, Williams JL. J. Org. Chem. 1968; 33: 1116
  • 18 Birch AJ, Nadamuni G. J. Chem. Soc., Perkin Trans. 1 1974; 545
  • 19 Jessup DW, Paschal JW, Rabideau PW. J. Org. Chem. 1977; 42: 2620
  • 20 Cook JW, Hewett CL. J. Chem. Soc. 1936; 62
  • 21 Rabideau PW, Huser DL, Nyikos SJ. Tetrahedron Lett. 1980; 21: 1401
  • 22 Franks D, Grossel MC, Hayward RC, Knutsen LJ. S. J. Chem. Soc., Chem. Commun. 1978; 941
  • 23 Rabideau PW, Nyikos SJ, Huser DL, Burkholder EG. J. Chem. Soc., Chem. Commun. 1980; 210
  • 24 Marcinow Z, Clawson DK, Rabideau PW. Tetrahedron 1989; 45: 5441
  • 25 Blasco I, Pérez H, Guijarro A. J. Phys. Org. Chem. 2015; 28: 388
  • 26 Rabideau PW, Peters NK, Huser DL. J. Org. Chem. 1981; 46: 1593
  • 27 Lebeuf R, Robert F, Landais Y. Org. Lett. 2005; 7: 4557
  • 28 Lebeuf R, Dunet J, Beniazza R, Ibrahim D, Bose G, Berlande M, Robert F, Landais Y. J. Org. Chem. 2009; 74: 6469
  • 29 Melero C, Guijarro A, Yus M. Tetrahedron Lett. 2006; 47: 6267
  • 30 Melero C, Guijarro A, Baumann V, Pérez-Jiménez AJ, Yus M. Eur. J. Org. Chem. 2007; 5514
  • 31 Fedyushin PA, Peshkov RY, Panteleeva EV, Tretyakov EV, Beregovaya IV, Gatilov YV, Shteingarts VD. Tetrahedron 2018; 74: 842
  • 32 Schultz AG, Macielag M, Podhorez DE, Suhadolnik JC, Kullnig RK. J. Org. Chem. 1988; 53: 2456
  • 33 Guo Z, Schultz AG. Org. Lett. 2001; 3: 1177
  • 34 Müller PM, Pfister R. Helv. Chim. Acta 1983; 66: 771
  • 35 Tanaka H, Shibata M, Ito K. Chem. Pharm. Bull. 1984; 32: 3271
  • 36 Tanaka H, Doi M, Shimizu H, Etoh H. Heterocycles 1999; 51: 2415
  • 37 Guo Z, Schultz AG. Tetrahedron Lett. 2004; 45: 919
  • 38 Schultz AG. Chem. Commun. 1999; 1263
  • 39 Malachowski WP, Paul T, Phounsavath S. J. Org. Chem. 2007; 72: 6792
  • 40 Dunet J, Lebeuf R, Bose G, Robert F, Landais Y. Org. Lett. 2010; 12: 2178
  • 41 Lebeuf R, Robert F, Schenk K, Landais Y. Org. Lett. 2006; 8: 4755
  • 42 Rousseau G, Lebeuf R, Schenk K, Castet F, Robert F, Landais Y. Chem. Eur. J. 2014; 20: 14771
  • 43 Beniazza R, Dunet J, Robert F, Schenk K, Landais Y. Org. Lett. 2007; 9: 3913
  • 44 Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 1995
  • 45 He C, Stratton TP, Baran PS. J. Am. Chem. Soc. 2019; 141: 29
  • 46 Zhu X, McAtee CC, Schindler CS. J. Am. Chem. Soc. 2019; 141: 3409
  • 47 Donohoe TJ, House D. J. Org. Chem. 2002; 67: 5015
  • 48 Donohoe TJ, Thomas RE. Nat. Protoc. 2007; 2: 1888
  • 49 Costanzo MJ, Patel MN, Petersen KA, Vogt PF. Tetrahedron Lett. 2009; 50: 5463
  • 50 Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J. Org. Lett. 2018; 20: 3439
  • 51 Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science 2019; 363: 838
  • 52 Chatterjee A, König B. Angew. Chem. Int. Ed. 2019; 58: 14289
  • 53 Cole JP, Chen D.-F, Kudisch M, Pearson RM, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2020; 142: 13573
  • 54 Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS. J. Am. Chem. Soc. 2022; 144: 5762
  • 55 Burrows J, Kamo S, Koide K. Science 2021; 374: 741