Synthesis 2023; 55(06): 868-876
DOI: 10.1055/s-0042-1751398
short review

Transition-Metal-Catalyzed Cross-Coupling of Chlorosilanes

Ying-Hui Yang
,
Xiaobo Pang
,
National Natural Science Foundation of China (22071084, 22271127), the Fundamental Research Funds for the Central Universities (lzujbky-2022-ey01).


Abstract

Chlorosilanes are the most accessible feedstock chemical in the organosilicon world. Cross-coupling involving chlorosilanes by transition metal catalysis offers a promising way for the production of organosilanes, which play essential roles in many important research areas, including agriculture, medicinal chemistry, and material science. This chemistry is firstly realized by coupling chlorosilanes with organometallic species and then extended to the silyl-Heck reaction with alkenes. Very recently, the cross-electrophile coupling of chlorosilanes has also been established. In this review, we summarize the progress of this chemistry.

1 Introduction

2 Cross-Coupling of Chlorosilanes with Organometallic Reagents

3 The Silyl-Heck Reaction of Chlorosilanes and Alkenes

4 Reductive Cross-Coupling of Chlorosilanes with Electrophiles

5 Summary and Outlook



Publication History

Received: 21 October 2022

Accepted after revision: 22 November 2022

Article published online:
20 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
    • 1b Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
    • 1c Sore HF, Galloway WR, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
  • 2 Keay BA. Arylsilanes . In Science of Synthesis, Vol. 4. Fleming I. Georg Thieme Verlag; Stuttgart: 2002: 685-712
    • 3a Marciniec B. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer; Berlin: 2009
    • 3b Troegel D, Stohrer J. Coordin. Chem. Rev. 2011; 255: 1440
    • 3c Du X, Huang Z. ACS Catal. 2017; 7: 1227
    • 3d Nakajima Y, Shimada S. RSC Adv. 2015; 5: 20603
    • 3e Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
    • 4a Shimada M, Yamanoi Y, Nishihara H. J. Synth. Org. Chem., Jpn. 2016; 74: 1098
    • 4b Korch KM, Watson DA. Chem. Rev. 2019; 119: 8192
    • 4c Bähr S, Xue W, Oestreich M. ACS Catal. 2019; 9: 16

      Selected recent examples:
    • 5a Tobisu M, Kita Y, Chatani N. J. Am. Chem. Soc. 2006; 128: 8152
    • 5b Zarate C, Martin R. J. Am. Chem. Soc. 2014; 136: 2236
    • 5c Guo H, Chen X, Zhao C, He W. Chem. Commun. 2015; 51: 17410
    • 5d Chu CK, Liang Y, Fu GC. J. Am. Chem. Soc. 2016; 138: 6404
    • 5e Xue W, Shishido R, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 12141
    • 5f Murugesan V, Balakrishnan V, Rasappan R. J. Catal. 2019; 377: 293
    • 5g Scharfbier J, Gross BM, Oestreich M. Angew. Chem. Int. Ed. 2020; 59: 1577
    • 6a Yamashita H, Kobayashi T, Hayashi T, Tanaka M. Chem. Lett. 1991; 20: 761
    • 6b McAtee JR, Martin SE, Ahneman DT, Johnson KA, Watson DA. Angew. Chem. Int. Ed. 2012; 51: 3663
    • 6c Martin SE, Watson DA. J. Am. Chem. Soc. 2013; 135: 13330
    • 6d Cinderella AP, Vulovic B, Watson DA. J. Am. Chem. Soc. 2017; 139: 7741
    • 7a Hamze A, Provot O, Alami M, Brion J.-D. Org. Lett. 2006; 8: 931
    • 7b Murata M, Ohara H, Oiwa R, Watanabe S, Masuda Y. Synthesis 2006; 1771
    • 7c Yamanoi Y, Taira T, Sato J.-i, Nakamula I, Nishihara H. Org. Lett. 2007; 9: 4543
    • 7d Inubushi H, Kondo H, Lesbani A, Miyachi M, Yamanoi Y, Nishihara H. Chem. Commun. 2013; 49: 134
    • 7e Chen L, Huang J.-B, Xu Z, Zheng Z.-J, Yang K.-F, Cui Y.-M, Cao J, Xu L.-W. RSC Adv. 2016; 6: 67113
  • 8 Rappoport Z, Apeloig Y. The Chemistry of Organic Silicon Compounds . Wiley; New York: 1998
  • 9 Walsh R. Acc. Chem. Res. 1981; 14: 246
  • 10 Kuyper J. Inorg. Chem. 1978; 17: 77
  • 11 Nii S, Terao J, Kambe N. Tetrahedron Lett. 2004; 45: 1699
  • 12 Terao J, Watabe H, Watanabe H, Kambe N. Adv. Synth. Catal. 2004; 346: 1674
  • 13 Naitoh Y, Bando F, Terao J, Otsuki K, Kuniyasu H, Kambe N. Chem. Lett. 2007; 36: 236
  • 14 Murakami K, Hirano K, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2008; 47: 5833
    • 15a Morita E, Murakami K, Iwasaki M, Hirano K, Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 1012
    • 15b Murakami K, Yorimitsu H, Oshima K. J. Org. Chem. 2009; 74: 1415
  • 16 Vulovic B, Cinderella AP, Watson DA. ACS Catal. 2017; 7: 8113
  • 17 Naganawa Y, Guo H, Sakamoto K, Nakajima Y. ChemCatChem 2019; 11: 3756
    • 18a Naganawa Y, Sakamoto K, Nakajima Y. Org. Lett. 2021; 23: 601
    • 18b Naganawa Y, Nakajima Y, Sakaki S, Kameo H. Eur. J. Org. Chem. 2022; 2022: e202101477
  • 19 Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
  • 20 Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
  • 21 Terao J, Torii K, Saito K, Kambe N, Baba A, Sonoda N. Angew. Chem. Int. Ed. 1998; 37: 2653
  • 22 Matsumoto K, Huang J, Naganawa Y, Guo H, Beppu T, Sato K, Shimada S, Nakajima Y. Org. Lett. 2018; 20: 2481
  • 23 Reid WB, McAtee JR, Watson DA. Organometallics 2019; 38: 3796
  • 24 Pang X, Su P.-F, Shu X.-Z. Acc. Chem. Res. 2022; 55: 2491
  • 25 Duan J, Wang K, Xu GL, Kang S, Qi L, Liu XY, Shu XZ. Angew. Chem. Int. Ed. 2020; 59: 23083
  • 26 Zhang L, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 18587
  • 27 Duan J, Wang Y, Qi L, Guo P, Pang X, Shu XZ. Org. Lett. 2021; 23: 7855
  • 28 Xing M, Cui H, Zhang C. Org. Lett. 2021; 23: 7645
  • 29 Zhao ZZ, Pang X, Wei XX, Liu XY, Shu XZ. Angew. Chem. Int. Ed. 2022; 61: e202200215
    • 30a Behr A, Naendrup F, Obst D. Adv. Synth. Catal. 2002; 344: 1142
    • 30b Iluc VM, Hillhouse GL. Tetrahedron 2006; 62: 7577
  • 31 Qi L, Pang X, Yin K, Pan Q.-Q, Wei X.-X, Shu X.-Z. Chin. Chem. Lett. 2022; 33: 5061