Synthesis 2023; 55(16): 2460-2472
DOI: 10.1055/s-0042-1751447
feature

Use of the N–O Bonds in N-Mesyloxyamides and N-Mesyloxyimides To Gain Access to 5-Alkoxy-3,4-dialkyloxazol-2-ones and 3-Hetero-Substituted Succinimides: A Combined Experimental and Theoretical Study

Lucca Pfitzer
a   Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
,
Juliane Heitkämper
b   Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
,
b   Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
,
René Peters
a   Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany
› Author Affiliations
J.H. acknowledges financial support in the form of a Ph.D. scholarship from the Studienstiftung des Deutschen Volkes (German National Academic Foundation). We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for supporting this work by funding EXC 2075-390740016 under Germany’s Excellence Strategy. The authors acknowledge support by the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg through bwHPC and the DFG through grant no. INST 40/575-1 FUGG (JUSTUS 2 cluster).


Abstract

The reactivity of N-mesyloxyamides and -imides with bases was studied based on the initial hypothesis of a possible [3,3]-rearrangement. While the intended α-sulfonyloxylation method could not be developed, the formation of valuable N-containing heterocyclic products was found. Treating N-mesyloxyamides with triethylamine gave fully substituted oxazolone products, which are masked α-amino acid derivatives. The products were identified by a computational approach, which revealed that α-lactams are first formed from an initial enolate by an intramolecular nucleophilic substitution. As strained intermediates, they readily rearrange to the oxazolone products. With a cyclic N-mesyloxyimide, elimination to a maleimide was found. This might indicate that sulfonyloxylation has taken place, but the corresponding product probably underwent elimination. Nucleophiles were then added to trap this suspected intermediate by substitution of methanesulfonate. That way, quaternary α-nitrogen- and α-oxygen-substituted succinimides could be formed, which represent a pharmacologically important class that has received much attention for its value in drug design.

Supporting Information



Publication History

Received: 16 February 2023

Accepted after revision: 28 March 2023

Article published online:
11 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • See for instance:
    • 1a Kishi Y. Tetrahedron 2002; 58: 6239
    • 1b Armstrong RW, Beau J.-M, Cheon SH, Christ WJ, Fujioka H, Ham W.-H, Hawkins LD, Jin H, Kang SH, Kishi Y, Martinelli MJ, McWhorter WW. Jr, Mizuno M, Nakata M, Stutz AE, Talmas FX, Taniguchi M, Tino JA, Veda K, Uenishi J.-i, White JB, Yonaga M. J. Am. Chem. Soc. 1989; 111: 7530
    • 1c Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Matelich MC, Scola PM, Spero DM, Yoon SK. J. Am. Chem. Soc. 1992; 114: 3162
    • 1d Nicolaou KC. Isr. J. Chem. 2011; 51: 312
    • 1e Nicolaou KC. Isr. J. Chem. 2018; 58: 104
  • 2 Nicolaou KC. Chem. Commun. 2003; 661
  • 3 Elkin M, Newhouse TR. Chem. Soc. Rev. 2018; 47: 7830

    • How computational chemistry can already assist organic synthesis:
    • 4a Tantillo DJ. Chem. Soc. Rev. 2018; 47: 7845

    • Computational methods for the future (AI and machine learning):
    • 4b Jorner K, Tomberg A, Bauer C, Sköld C, Norrby P.-O. Nat. Rev. Chem. 2021; 5: 240

    • One example of a computational-guided total synthesis of complex natural products:
    • 4c Nakajima M, Adachi Y, Nemoto T. Nat. Commun. 2022; 13: 152
  • 5 Munita JM, Arias CA. Microbiol. Spectrum 2016; 4: VMBF-0016-2015 DOI: 10.1128/microbiolspec.VMBF-0016-2015.

    • Review:
    • 7a Chauhan P, Kaur J, Chimni SS. Chem. Asian J. 2013; 8: 328

    • Examples:
    • 7b Shintani R, Duan W.-L, Hayashi T. J. Am. Chem. Soc. 2006; 128: 5628
    • 7c Bartoli G, Bosco M, Carlone A, Cavalli A, Locatelli M, Mazzanti A, Ricci P, Sambri L, Melchiorre P. Angew. Chem. Int. Ed. 2006; 45: 4966
    • 7d Sato M, Dander JE, Sato C, Hung Y.-S, Gao S.-S, Tang M.-C, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. J. Am. Chem. Soc. 2017; 139: 5317
    • 7e Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Bioorg. Chem. 2021; 108: 104557

      See for instance:
    • 8a Diekema DJ, Jones RN. Lancet 2001; 358: 1975
    • 8b Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Capparelli EV, Adamson PC. N. Engl. J. Med. 2010; 362: 790
  • 9 Weber M, Frey W, Peters R. Angew. Chem. Int. Ed. 2013; 52: 13223
  • 10 Hoffman RV, Madan S. J. Org. Chem. 2003; 68: 4876
    • 11a Lengyel I, Sheehan JC. Angew. Chem., Int. Ed. Engl. 1968; 7: 25
    • 11b Baumgarten HE. J. Am. Chem. Soc. 1962; 84: 4975
  • 12 Sheehan JC, Nafissi-Varchei MM. J. Am. Chem. Soc. 1969; 91: 4596
    • 13a Hoffman RV, Nayyar NK, Chen W. J. Am. Chem. Soc. 1993; 115: 5031

    • Selected examples for work of the Peters group on strained heterocycles:
    • 13b Wannenmacher N, Pfeffer C, Frey W, Peters R. J. Org. Chem. 2022; 87: 670
    • 13c Meier P, Broghammer F, Latendorf K, Rauhut G, Peters R. Molecules 2012; 17: 7121
    • 13d Koch FM, Peters R. Chem. Eur. J. 2011; 17: 3679
    • 13e Kull T, Cabrera J, Peters R. Chem. Eur. J. 2010; 16: 9132
    • 13f Zajac M, Peters R. Org. Lett. 2007; 9: 2007

      Selected studies of isoxazolinones by our groups:
    • 14a Yu X, Hu L, Frey W, Lu G, Peters R. Angew. Chem. Int. Ed. 2022; 61: e202210145
    • 14b Wannenmacher N, Keim N, Frey W, Peters R. Eur. J. Org. Chem. 2022; e202200030
    • 14c Ref. 13b.
    • 14d Rieckhoff S, Meisner J, Kästner J, Frey W, Peters R. Angew. Chem. Int. Ed. 2018; 57: 1404
    • 14e Rieckhoff S, Frey W, Peters R. Eur. J. Org. Chem. 2018; 1797
    • 14f Rieckhoff S, Titze M, Frey W, Peters R. Org. Lett. 2017; 19: 4436
    • 14g Rieckhoff S, Hellmuth T, Peters R. J. Org. Chem. 2015; 80: 6822

    • For acyclic alkoxyamines, see:
    • 14h Yu X, Wannenmacher N, Peters R. Angew. Chem. Int. Ed. 2020; 59: 10944
    • 15a Zhao Y, Truhlar DG. Acc. Chem. Res. 2008; 41: 157
    • 15b Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 16 Pracht P, Bohle F, Grimme S. Phys. Chem. Chem. Phys. 2020; 22: 7169
  • 17 TURBOMOLE Version 7.4.1 . University of Karlsruhe and Forschungszentrum Karlsruhe GmbH; Karlsruhe: 2019
  • 18 Kästner J, Carr JM, Keal TW, Thiel W, Wander A, Sherwood P. J. Phys. Chem. A 2009; 113: 11856
    • 19a Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CR. A, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S, Kendrick J, Rogers SC, Casci J, Watson M, King F, Karlsen E, Sjøvoll M, Fahmi A, Schäfer A, Lennartz C. J. Mol. Struct. 2003; 632: 1
    • 19b Metz S, Kästner J, Sokol AA, Keal TW, Sherwood P. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014; 4: 101
    • 20a Klamt A, Schüürmann G. J. Chem. Soc., Perkin Trans. 2 1993; 799
    • 20b Klamt A. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011; 1: 699
  • 21 Zhao Y, Truhlar DG. J. Phys. Chem. A 2005; 109: 5656

    • Alternative ways to prepare 4-substituted 5-alkoxyoxazol-2(3H)-ones. By photorearrangement of 3-hydroxyisoxazoles:
    • 22a Göth H, Gagneux AR, Eugster CH, Schmid H. Helv. Chim. Acta 1967; 50: 137

    • From ylides and isocyanates:
    • 22b Gololobov YuG, Golding IR, Galkina MA, Lokshin BV, Garbuzova IA, Petrovskii PV, Starikova ZA, Averkiev BB. Russ. Chem. Bull. 2006; 55: 883

    • From amino acids and phosgene:
    • 22c Miyata H, Ataka K, Satake N, Hagihara M. Patent WO9822449, 1998

    • From aldehydes and KCN:
    • 22d Viscontini M, Raschig H. Helv. Chim. Acta 1959; 42: 570
  • 23 Preparation of 4-unsubstituted 5-alkoxyoxazol-2(3H)-ones: Hoffman RV, Reddy MM, Cervantes-Lee F. J. Org. Chem. 2000; 65: 2591
  • 24 Miyata H, Honma T, Yamamoto Y, Ataka K, Satake N. Patent JP2000007666, 2000
  • 25 Knizia G. J. Chem. Theory Comput. 2013; 9: 4834
  • 26 Lewis GN. J. Am. Chem. Soc. 1916; 38: 762
  • 27 Knizia G, Klein JE. M. N. Angew. Chem. Int. Ed. 2015; 54: 5518
  • 28 Gonzalez C, Schlegel HB. J. Phys. Chem. 1990; 94: 5523
  • 29 Cisar JS, Grice CA, Jones TK, Wang D.-H, Weber O, Cravatt BF, Niphakis MJ, Cognetta A, Chang JW. Patent WO2013142307, 2013
    • 30a Vogt H, Bräse S. Org. Biomol. Chem. 2007; 5: 406
    • 30b Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2007; 18: 569
    • 31a Obrecht D, Abrecht C, Altorfer M, Bohdal U, Grieder A, Kleber M, Pfyffer P, Müller K. Helv. Chim. Acta 1996; 79: 1315

    • Amino succinimides also display, for example, anticonvulsant activity and play a crucial role in protein splicing and other post-translational protein modifications:
    • 31b Park M, Lee J, Choi J. Bioorg. Med. Chem. Lett. 1996; 6: 1297
    • 31c Shao Y, Xu M.-Q, Paulus H. Biochemistry 1995; 34: 10844
    • 31d Thompson PE, Wijaya NL. E, Ng FM, Hearn MT. W. Bioorg. Med. Chem. Lett. 1993; 3: 1625
  • 32 Hebenbrock K.-F. Justus Liebigs Ann. Chem. 1978; 320
  • 33 Courtens C, Risseeuw M, Caljon G, Maes L, Martin A, van Calenbergh S. Bioorg. Med. Chem. 2019; 27: 729
    • 34a Courtens C, Risseeuw M, Caljon G, Cos P, van Calenbergh S. ACS Med. Chem. Lett. 2018; 9: 986
    • 34b See ref. 10.
  • 35 Schilling W, Zhang Y, Riemer D, Das S. Chem. Eur. J. 2020; 26: 390