Synthesis 2023; 55(04): 547-564
DOI: 10.1055/s-0042-1753053
short review

Acceptorless Dehydrogenation of Aliphatics, Amines, and Alcohols with Homogeneous Catalytic Systems

Min-Jie Zhou
a   The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
b   Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
,
Guixia Liu
a   The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Chen Xu
b   Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
,
Zheng Huang
a   The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
c   School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. of China
› Author Affiliations
21732006
We grateful acknowledge support from the National Basic Research Program of China (2021YFA1500100, 2021YFA1501700), National Natural Science Foundation of China (21825109, 21821002, 21732006, 22072178, K21211026), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), Shenzhen Science and Technology Program (KQTD20180411143514543 and K20215006), K. C. Wong Education Foundation, Youth Interdisciplinary Team (JCTD-2021-11) (CAS), and Ningbo Municipal Bureau of Science and Technology (2019B10096).


Abstract

The dehydrogenation of saturated substrates is fundamentally essential for producing value-added unsaturated organic molecules both in academia and industry. In recent years, homogeneously catalyzed acceptorless C–C, C–N, and C–O bond desaturations have attracted increasing attention due to high atom economy, environmentally benign nature, and wide availability of the starting materials. This short review discusses the acceptorless dehydrogenation of aliphatics, alcohols, and amines by homogeneous catalytic systems based on two categories of reaction mechanisms: thermal transition-metal-catalyzed two-electron pathway and photoredox catalyzed or electrochemically driven one-electron pathway.

1 Introduction

2 Catalytic Acceptorless Dehydrogenation of Aliphatics

3 Catalytic Acceptorless Dehydrogenation of Amines

4 Catalytic Acceptorless Dehydrogenation of Alcohols

5 Conclusion



Publication History

Received: 27 July 2022

Accepted after revision: 19 September 2022

Article published online:
03 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Budweg S, Junge K, Beller M. Catal. Sci. Technol. 2020; 10: 3825
  • 2 Gunanathan C, Milstein D. Science 2013; 341: 1229712
    • 3a Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP. Energy Environ. Sci. 2008; 1: 79
    • 3b Zhu Q.-L, Xu Q. Energy Environ. Sci. 2015; 8: 478
    • 4a Kariya N, Fukuoka A, Ichikawa M. Appl. Catal. 2002; 233: 91
    • 4b Watson LA, Eisenstein O. J. Chem. Educ. 2002; 79: 1269
    • 4c Moores A, Poyatos M, Luo Y, Crabtree RH. New J. Chem. 2006; 30: 1675

      For selected reviews, see:
    • 5a Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 5b Choi J, MacArthur AH. R, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
    • 5c Haibach MC, Kundu S, Brookhart M, Goldman AS. Acc. Chem. Res. 2012; 45: 947
    • 5d Lohr TL, Marks TJ. Nat. Chem. 2015; 7: 477
    • 5e Chen C, Verpoort F, Wu Q. RSC Adv. 2016; 6: 55599
    • 5f Paul B, Maji M, Chakrabarti K, Kundu S. Org. Biomol. Chem. 2020; 18: 2193
    • 5g Nad P, Mukherjee A. Asian J. Org. Chem. 2021; 10: 1958
  • 6 Kumar A, Bhatti TM, Goldman AS. Chem. Rev. 2017; 117: 12357
  • 7 Burk MJ, Crabtree RH, McGrath DV. J. Chem. Soc., Chem. Commun. 1985; 1829
  • 8 Burk MJ, Crabtree RH. J. Am. Chem. Soc. 1987; 109: 8025
  • 9 Sakakura T, Sodeyama T, Tokunaga Y, Tanaka M. Chem. Lett. 1988; 263
  • 10 Nomura K, Saito Y. J. Chem. Soc., Chem. Commun. 1988; 161
  • 11 Maguire JA, Boese WT, Goldman AS. J. Am. Chem. Soc. 1989; 111: 7088
    • 12a Chowdhury AD, Weding N, Julis J, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6477
    • 12b Chowdhury AD, Julis J, Grabow K, Hannebauer B, Bentrup U, Adam M, Franke R, Jackstell R, Beller M. ChemSusChem 2015; 8: 323
  • 13 Crabtree RH, Mihelcic JM, Quirk JM. J. Am. Chem. Soc. 1979; 101: 7738
  • 14 Gupta M, Chrystel H, Flesher RJ, Kaska WC, Jensen CM. Chem. Commun. 1996; 2083
  • 15 Xu W, Rosini GP, Gupta M, Jensen CM, Kaska WC, Krogh-Jespersen K, Goldman AS. Chem. Commun. 1997; 2273
  • 16 Liu F, Goldman AS. Chem. Commun. 1999; 655
    • 17a Haenel MW, Oevers S, Angermund K, Kaska WC, Fan H.-J, Hall MB. Angew. Chem. Int. Ed. 2001; 40: 3596
    • 17b Zhu K, Achord PD, Zhang X, Krogh-Jespersen K, Goldman AS. J. Am. Chem. Soc. 2004; 126: 13044
    • 17c Chianese AR, Mo A, Lampland NL, Swartz RL, Bremer PT. Organometallics 2010; 29: 3019
    • 17d Chianese AR, Drance MJ, Jensen KH, McCollom SP, Yusufova N, Shaner SE, Shopov DY, Tendler JA. Organometallics 2014; 33: 457
    • 17e Zhang X, Wu S.-B, Leng X, Chung LW, Liu G, Huang Z. ACS Catal. 2020; 10: 6475
    • 18a Gruver BC, Adams JJ, Warner SJ, Arulsamy N, Roddick DM. Organometallics 2011; 30: 5133
    • 18b Gruver BC, Adams JJ, Arulsamy N, Roddick DM. Organometallics 2013; 32: 6468
    • 18c Zhang Y, Fang H, Yao W, Leng X, Huang Z. Organometallics 2016; 35: 181

      For other examples of pincer-ligated transition-metal-catalyzed acceptorless dehydrogenation of alkanes, see:
    • 19a Punji B, Emge TJ, Goldman AS. Organometallics 2010; 29: 2702
    • 19b Adams JJ, Arulsamy N, Roddick DM. Organometallics 2012; 31: 1439
    • 19c Kovalenko OO, Wendt OF. Dalton Trans. 2016; 45: 15963
    • 19d Dinh LV, Li B, Kumar A, Schinski W, Field KD, Kuperman A, Celik FE, Goldman AS. ACS Catal. 2016; 6: 2836
    • 20a Allen KE, Heinekey DM, Goldman AS, Goldberg KI. Organometallics 2013; 32: 1579
    • 20b Pahls DR, Allen KE, Goldberg KI, Cundari TR. Organometallics 2014; 33: 6413
    • 20c Gao Y, Guan C, Zhou M, Kumar A, Emge TJ, Wright AM, Goldberg KI, Krogh-Jespersen K, Goldman AS. J. Am. Chem. Soc. 2017; 139: 6338
    • 20d Zhou X, Malakar S, Dugan T, Wang K, Sattler A, Marler DO, Thomas JE, Krogh-Jespersen K, Goldman AS. ACS Catal. 2021; 11: 14194
    • 21a Rabay B, Braun T, Falkenhagen JP. Dalton Trans. 2013; 42: 8058
    • 21b Kusumoto S, Akiyama M, Nozaki K. J. Am. Chem. Soc. 2013; 135: 18726
    • 21c Ando H, Kusumoto S, Wu W, Nozaki K. Organometallics 2017; 36: 2317
  • 22 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
    • 23a Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
    • 23b Fuse H, Kojima M, Mitsunuma H, Kanai M. Org. Lett. 2018; 20: 2042
  • 24 Zhou M.-J, Zhang L, Liu G, Xu C, Huang Z. J. Am. Chem. Soc. 2021; 143: 16470
  • 25 Dempsey JL, Brunschwig BS, Winkler JR, Gray HB. Acc. Chem. Res. 2009; 42: 1995
    • 26a Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 26b Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
    • 26c Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
    • 27a Clot E, Eisenstein O, Crabtree RH. Chem. Commun. 2007; 2231
    • 27b Crabtree RH. Energy Environ. Sci. 2008; 1: 134
    • 28a Yamaguchi R, Ikeda C, Takahashi T, Fujita K.-I. J. Am. Chem. Soc. 2009; 131: 8410
    • 28b Fujita K.-I, Tanaka Y, Kobayashi M, Yamaguchi R. J. Am. Chem. Soc. 2014; 136: 4829
    • 28c Fujita K.-I, Wada T, Shiraishi T. Angew. Chem. Int. Ed. 2017; 56: 10886
  • 29 Wu J, Talwar D, Johnston S, Yan M, Xiao J. Angew. Chem. Int. Ed. 2013; 52: 6983
    • 30a Vivancos Á, Beller M, Albrecht M. ACS Catal. 2018; 8: 17
    • 30b Wang S, Huang H, Bruneau C, Fischmeister C. ChemSusChem 2019; 12: 2350
    • 30c Wang Q, Chai H, Yu Z. Organometallics 2018; 37: 584
    • 30d Esteruelas MA, Lezáun V, Martínez A, Oliván M, Oñate E. Organometallics 2017; 36: 2996

      For other selected examples of precious-metal-catalyzed CAD reactions from saturated N-heterocycles, see:
    • 31a Wang Z, Belli J, Jensen CM. Faraday Discuss. 2011; 151: 297
    • 31b Muthaiah S, Hong SH. Adv. Synth. Catal. 2012; 354: 3045
    • 31c Manas MG, Sharninghausen LS, Lin E, Crabtree RH. J. Organomet. Chem. 2015; 792: 184
    • 31d Buil ML, Esteruelas MA, Gay MP, Gómez-Gallego M, Nicasio AI, Oñate E, Santiago A, Sierra MA. Organometallics 2018; 37: 603
    • 32a Chakraborty S, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2014; 136: 8564
    • 32b Xu R.; Chakraborty S.; Yuan H.; Jones W. D. ACS Catal. 2015, 5, 6350.
    • 33a Maier AF. G, Tussing S, Schneider T, Florke U, Qu Z.-W, Grimme S, Paradies J. Angew. Chem. Int. Ed. 2016; 55: 12219
    • 33b Kojima M, Kanai M. Angew. Chem. Int. Ed. 2016; 55: 12224
  • 34 Yoshida T, Okano T, Otsuka S. J. Chem. Soc., Chem. Commun. 1979; 870
    • 35a Tseng K.-NT, Rizzi AM, Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
    • 35b Hale LV. A, Malakar T, Tseng K.-NT, Zimmerman PM, Paul A, Szymczak NK. ACS Catal. 2016; 6: 4799
    • 35c Tseng K.-NT, Szymczak NK. Synlett 2014; 25: 2385
  • 36 Dutta I, Yadav S, Sarbajna A, De S, Hölscher M, Leitner W, Bera JK. J. Am. Chem. Soc. 2018; 140: 8662
  • 38 Nie X, Zheng Y, Ji L, Fu H, Chen H, Li R. J. Catal. 2020; 391: 378
  • 39 He KH, Tan FF, Zhou CZ, Zhou GJ, Yang XL, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
  • 40 Sahoo MK, Balaraman E. Green Chem. 2019; 21: 2119
  • 41 Chao D, Zhao M. Dalton Trans. 2019; 48: 5444
  • 42 Wu Y, Yi H, Lei A. ACS Catal. 2018; 8: 1192

    • For selected reviews, see:
    • 43a Johnson TC, Morris DJ, Wills M. Chem. Soc. Rev. 2010; 39: 81
    • 43b Trincado M, Banerjee D, Grützmacher H. Energy Environ. Sci. 2014; 7: 2464
    • 43c Crabtree RH. Chem. Rev. 2017; 117: 9228
    • 43d Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Chem. Rev. 2018; 118: 372
    • 43e Trincado M, Bösken J, Grützmacher H. Coord. Chem. Rev. 2021; 443: 213967
    • 44a Dobson A, Robinson SD. J. Organomet. Chem. 1975; 87: C52
    • 44b Dobson A, Robinson SD. Inorg. Chem. 1977; 16: 137
  • 45 Lin Y, Ma D, Lu X. Tetrahedron Lett. 1987; 28: 3115
    • 46a Ligthart GB. W. L, Meijer RH, Donners MP. J, Meuldijk J, Vekemans JA. J. M, Hulshof LA. Tetrahedron Lett. 2003; 44: 1507
    • 46b van Buijtenen J, Meuldijk J, Vekemans JA. J. M, Hulshof LA, Kooijman H, Spek AL. Organometallics 2006; 25: 873
  • 47 Zhang J, Gandelman M, Shimon LJ. W, Rozenberg H, Milstein D. Organometallics 2004; 23: 4026
  • 48 Zhang J, Balaraman E, Leitus G, Milstein D. Organometallics 2011; 30: 5716
    • 49a Wang Z, Pan B, Liu Q, Yue E, Solan GA, Ma Y, Sun W.-H. Catal. Sci. Technol. 2017; 7: 1654
    • 49b Bhatia A, Muthaiah S. ChemistrySelect 2018; 3: 3737
    • 49c Musa S, Shaposhnikov I, Cohen S, Gelman D. Angew. Chem. Int. Ed. 2011; 50: 3533
    • 49d Dutta I, Sarbajna A, Pandey P, Rahaman SM. W, Singh K, Bera JK. Organometallics 2016; 35: 1505
    • 49e Baratta W, Bossi G, Putignano E, Rigo P. Chem. Eur. J. 2011; 17: 3474

      For other selected examples of precious-metal-catalyzed CAD reactions from alcohols, see:
    • 50a Adair GR. A, Williams JM. J. Tetrahedron Lett. 2005; 46: 8233
    • 50b Tseng K.-NT, Kampf JW, Szymczak NK. Organometallics 2013; 32: 2046
    • 50c Gülcemal S, Gülcemal D, Whitehead GF. S, Xiao J. Chem. Eur. J. 2016; 22: 10513
    • 50d Alabau RG, Esteruelas MA, Martínez A, Oliván M, Oñate E. Organometallics 2018; 37: 2732
    • 50e Jayaprakash H, Guo L, Wang S, Bruneau C, Fischmeister C. Eur. J. Org. Chem. 2020; 4326
    • 50f Li R.-J, Wang Y, Jin Y, Deng W, Liu Z.-J, Yao Z.-J. New J. Chem. 2021; 45: 19002
    • 51a Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
    • 51b Baratta W, Barbato C, Magnolia S, Siega K, Rigo P. Chem. Eur. J. 2010; 16: 3201
    • 52a Fujita K, Tanino N, Yamaguchi R. Org. Lett. 2007; 9: 109
    • 52b Fujita K, Yoshida T, Imori Y, Yamaguchi R. Org. Lett. 2011; 13: 2278
    • 52c Kawahara R, Fujita K, Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643
    • 52d Fujita K, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamaguchi R. ACS Catal. 2017; 7: 7226
    • 52e Kawahara R, Fujita K, Yamaguchi R. Angew. Chem. Int. Ed. 2012; 51: 12790
    • 52f Fujita K. Bull. Chem. Soc. Jpn. 2019; 92: 344
    • 53a Zhang G, Hanson SK. Org. Lett. 2013; 15: 650
    • 53b Zhang G, Vasudevan KV, Scott BL, Hanson SK. J. Am. Chem. Soc. 2013; 135: 8668
  • 54 Chakraborty S, Lagaditis PO, Förster M, Bielinski EA, Hazari N, Holthausen MC, Jones WD, Schneider S. ACS Catal. 2014; 4: 3994
    • 55a Chakraborty S, Piszel PE, Brennessel WW, Jones WD. Organometallics 2015; 34: 5203
    • 55b Bruneau-Voisine A, Wang D, Roisnel T, Darcel C, Sortais J.-B. Catal. Commun. 2017; 92: 1
    • 55c Xu S, Alhthlol LM, Paudel K, Reinheimer E, Tyer DL, Taylor DK, Smith AM, Holzmann J, Lozano E, Ding K. Inorg. Chem. 2018; 57: 2394

      For other examples of 3d-transition-metal-complex catalyzed acceptorless dehydrogenation of alcohols, see:
    • 56a Song H, Kang B, Hong SH. ACS Catal. 2014; 4: 2889
    • 56b Kamitani M, Ito M, Itazaki M, Nakazawa H. Chem. Commun. 2014; 50: 7941

      For selected examples of heterogeneous catalytic systems, see:
    • 57a Liu Z, Caner J, Kudo A, Naka H, Saito S. Chem. Eur. J. 2013; 19: 9452
    • 57b Chai Z, Zeng T.-T, Li Q, Lu L.-Q, Xiao W.-J, Xu D. J. Am. Chem. Soc. 2016; 138: 10128
    • 57c Zhao L.-M, Meng Q.-Y, Fan X.-B, Ye C, Li X.-B, Chen B, Ramamurthy V, Tung C.-H, Wu L.-Z. Angew. Chem. Int. Ed. 2017; 56: 3020
  • 58 Yang X.-J, Zheng Y.-W, Zheng L.-Q, Wu L.-Z, Tong C.-H, Chen B. Green Chem. 2019; 21: 1401
  • 59 Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 4493