Planta Med 2017; 83(11): 912-920
DOI: 10.1055/s-0043-104776
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Chemical Composition, Antiprotozoal and Cytotoxic Activities of Indole Alkaloids and Benzofuran Neolignan of Aristolochia cordigera

Marcos D. P. Pereira
1   Instituto de Química, Universidade Estadual Paulista, Araraquara – SP, Brasil
,
Tito da Silva
2   Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz – MA, Brasil
,
Anna Caroline C. Aguiar
3   Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos – SP, Brasil
,
Glaucius Oliva
3   Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos – SP, Brasil
,
Rafael V. C. Guido
3   Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos – SP, Brasil
,
Jenicer K. U. Yokoyama-Yasunaka
4   Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo – SP, Brasil
,
Silvia R. B. Uliana
4   Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo – SP, Brasil
,
Lucia M. X. Lopes
1   Instituto de Química, Universidade Estadual Paulista, Araraquara – SP, Brasil
› Author Affiliations
Further Information

Publication History

received 17 November 2016
revised 08 February 2017

accepted 19 February 2017

Publication Date:
06 March 2017 (online)

Abstract

This is a comparative study on the intraspecific chemical variability of Aristolochia cordigera species, collected in two different regions of Brazil, Biome Cerrado (semiarid) and Biome Amazônia (coastal). The use of GC-MS and statistical methods led to the identification of 56 compounds. A higher percentage of palmitone and germacrene-D in the hexanes extracts of the leaves of plants from these respective biomes was observed. Phytochemical studies on the extracts led to the isolation and identification of 19 known compounds, including lignans, neolignans, aristolochic acids, indole-β-carboline, and indole alkaloids. In addition, two new indole alkaloids, 3,4-dihydro-hyrtiosulawesine and 6-O-(β-glucopyranosyl)hyrtiosulawesine, were isolated and a new neolignan, cis-eupomatenoid-7, was obtained in a mixture with its known isomer eupomatenoid-7. Their structures were determined by spectroscopic methods, mainly by 1D- and 2D-NMR. The occurrence of indole alkaloids is being described for the first time in the Aristolochiaceae family. Moreover, the in vitro susceptibility of intracellular amastigote and promastigote forms of Leishmania amazonensis to the alkaloids and eupomatenoid-7 were evaluated. This neolignan exhibited low activity against promastigotes (IC50 = 46 µM), while the alkaloids did not show inhibitory activity. The new alkaloid 6-O-(β-glucopyranosyl)hyrtiosulawesine exhibited activity in the low micromolar range against Plasmodium falciparum, with an IC50 value of 5 µM and a selectivity index higher than 50.

Supporting Information

Data of scores and loading for principal components (PCs) and yields of the hexane extracts, IR, UV, HRMS, 1D and 2D NMR spectra of 20 and 21, and 1H NMR spectra of 1 and 22, along with the dose-response curves of compounds 19 and 21 against P. falciparum, and of compound 1 against promastigotes of L. amazonensis, are available as Supporting Information.

 
  • References

  • 1 Lopes LMX, Nascimento IR, da Silva T. Phytochemistry of the Aristolochiaceae Family. In: Mohan RMM. ed. Research Advances in Phytochemistry. Kerala, India: Global Research Network; 2001: 19-108
  • 2 Michl J, Ingrouille MJ, Simmonds MSJ, Heinrich M. Naturally occurring aristolochic acid analogues and their toxicities. Nat Prod Rep 2014; 31: 676-693
  • 3 Messiano GB, Vieira L, Machado MB, Lopes LMX, de Bortoli SA, Zukerman-Schpector J. Evaluation of insecticidal activity of diterpenes and lignans from Aristolochia malmeana against Anticarsia gemmatalis . J Agric Food Chem 2008; 56: 2655-2659
  • 4 Nascimento IR, Murata AT, de Bortoli SA, Lopes LMX. Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest Manag Sci 2004; 60: 413-416
  • 5 Honda K, Saitoh T, Hara S, Hayashi N. A neolignoid feeding deterrent against Luehdorfia-puziloi larvae (Lepidoptera, Papilionidae) from Heterotropa-aspera, a host-plant of sibling species, Luehdorfia-japonica . J Chem Ecol 1995; 21: 1541-1548
  • 6 Leon-Diaz R, Meckes-Fischer M, Valdovinos-Martinez L, Hernandez-Pando HRE, Campos MG, Jimenez-Arellanes MA. Antitubercular activity and subacute toxicity of (−)-licarin A in BALB/c mice: a neolignan isolated from Aristolochia taliscana . Arch Med Res 2013; 44: 99-104
  • 7 De Andrade-Neto VF, da Silva T, Lopes LMX, do Rosario VE, de Pilla Varotti F, Krettli AU. Antiplasmodial activity of aryltetralone lignans from Holostylis reniformis . Antimicrob Agents Chemother 2007; 51: 2346-2350
  • 8 Pereira MDP, Ferreira MR, Messiano GB, Ceravolo IP, Lopes LMX, Krettli AU. Aryltetralols from Holostylis reniformis and syntheses of lignan analogous. Phytochem Lett 2015; 13: 200-205
  • 9 Rakotondraibe LH, Graupner PR, Xiong QB, Olson M, Wiley JD, Krai P, Brodie PJ, Callmander MW, Rakotobe E, Ratovoson F, Rasannison VE, Cassera MB, Hahn DR, Kingston DGI, Fotso S. Neolignans and other metabolites from Ocotea cymosa from the Madagascar rain forest and their biological activities. J Nat Prod 2015; 78: 431-440
  • 10 Vendrametto MC, dos Santos AO, Nakamura CV, Dias BP, Cortez DAG, Ueda-Nakamura T. Evaluation of antileishmanial activity of eupomatenoid-5, a compound isolated from leaves of Piper regnellii var. pallescens. Parasitol Int 2010; 59: 154-158
  • 11 Abe F, Nagafuji S, Yamauchi T, Okabe H, Maki J, Higo H, Akahane H, Aguilar A, Jimenez-Estrada M, Reyes-Chilpa R. Trypanocidal constituents in plants 1. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in Guaco, roots of Aristolochia taliscana . Biol Pharm Bull 2002; 25: 1188-1191
  • 12 Zamilpa A, Abarca-Vargas R, Ventura-Zapata E, Osuna-Torres L, Zavala MA, Herrera-Ruiz M, Jimenez-Ferrer E, Gonzalez-Cortazar M. Neolignans from Aristolochia elegans as antagonists of the neurotropic effect of scorpion venom. J Ethnopharmacol 2014; 157: 156-160
  • 13 Tang GH, Chen ZW, Lin TT, Tan M, Gao XY, Bao JM, Cheng ZB, Sun ZH, Huang G, Yin S. Neolignans from Aristolochia fordiana prevent oxidative stress-induced neuronal death through maintaining the Nrf2/HO-1 pathway in HT22 cells. J Nat Prod 2015; 78: 1894-1903
  • 14 Lee C, Lee JW, Jin Q, Lee HJ, Lee SJ, Lee D, Lee MK, Lee CK, Hong JT, Hwang BY. Anti-inflammatory constituents from the fruits of Vitex rotundifolia . Bioorg Med Chem Lett 2013; 23: 6010-6014
  • 15 Cao GY, Yang XW, Xu W, Li F. New inhibitors of nitric oxide production from the seeds of Myristica fragrans . Food Chem Toxicol 2013; 62: 167-171
  • 16 Martins GF, Pereira MDP, Lopes LMX, da Silva T, Rosa P, Barbosa FP, Messiano GB, Krettli AU. Intraspecific variability of Holostylis reniformis: concentration of lignans, as determined by maceration and supercritical fluid extraction (SFE-CO2), as a function of plant provenance and plant parts. Quim Nova 2014; 37: 281-287
  • 17 Abdjul DB, Yamazaki H, Ukai K, Namikoshi M. Two new indole derivatives from a marine sponge Ircinia sp. collected at Iriomote Island. J Nat Med 2015; 69: 416-420
  • 18 Liew LPP, Fleming JM, Longeon A, Mouray E, Florent I, Bourguet-Kondracki ML, Copp BR. Synthesis of 1-indolyl substituted beta-carboline natural products and discovery of antimalarial and cytotoxic activities. Tetrahedron 2014; 70: 4910-4920
  • 19 Sauleau P, Martin MT, Dau M, Youssef DTA, Bourguet-Kondracki ML. Hyrtiazepine, an azepino-indole-type alkaloid from the Red Sea marine sponge Hyrtios erectus . J Nat Prod 2006; 69: 1676-1679
  • 20 Endo T, Tsuda M, Fromont J, Kobayashi J. Hyrtinadine A, a bis-indole alkaloid from a marine sponge. J Nat Prod 2007; 70: 423-424
  • 21 Salmoun M, Devijver C, Daloze D, Braekman JC, van Soest RWM. 5-Hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios . J Nat Prod 2002; 65: 1173-1176
  • 22 Irlinger B, Bartsch A, Kramer HJ, Mayser P, Steglich W. New tryptophan metabolites from cultures of the lipophilic yeast Malassezia furfur . Helv Chim Acta 2005; 88: 1472-1485
  • 23 Zhu LH, Chen C, Wang H, Ye WC, Zhou GX. Indole alkaloids from Alocasia macrorrhiza . Chem Pharm Bull (Tokyo) 2012; 60: 670-673
  • 24 Watanabe LY, Lopes LMX. Alkaloids from Aristolochia arcuata . Phytochemistry 1995; 40: 991-994
  • 25 Wang EC, Wein YS, Kuo YH. A concise and efficient synthesis of salvinal from isoeugenol via a phenoxenium ion intermediate. Tetrahedron Lett 2006; 47: 9195-9197
  • 26 Achenbach H. Pharmaceutical compounds isolated from Aristolochia taliscana . Patent WO 9906388A2, 1999
  • 27 Tsai IL, Chen JH, Duh CY, Chen IS. Cytotoxic neolignans and butanolides from Machilus obovatifolia . Planta Med 2001; 67: 559-561
  • 28 Nascimento IR, Lopes LMX. 2,3-Dihydrobenzofuran neolignans from Aristolochia pubescens . Phytochemistry 1999; 52: 345-350
  • 29 Da Silva T, Lopes LMX. Aryltetralone lignans and 7,8-seco-lignans from Holostylis reniformis . Phytochemistry 2004; 65: 751-759
  • 30 Herath H, Priyadarshani AMA. Two lignans and an aryl alkanone from Myristica dactyloides . Phytochemistry 1996; 42: 1439-1442
  • 31 Nascimento IR, Lopes LMX. Diterpene esters of aristolochic acids from Aristolochia pubescens . Phytochemistry 2003; 63: 953-957
  • 32 Pistelli L, Nieri E, Bilia AR, Marsili A, Scarpato R. Chemical constituents of Aristolochia rigida and mutagenic activity ofaristolochic acid IV. J Nat Prod 1993; 56: 1605-1608
  • 33 Holzbach JC, Lopes LMX. Aristolactams and alkamides of Aristolochia gigantea . Molecules 2010; 15: 9462-9472
  • 34 Kobayashi J, Murayama T, Ishibashi M, Kosuge S, Takamatsu M, Ohizumi Y, Kobayashi H, Ohta T, Nozoe S, Sasaki T. Hyrtiosin-A and hyrtiosin-B, new indole alkaloids from the Okinawan marine sponge Hyrtios-erecta . Tetrahedron 1990; 46: 7699-7702
  • 35 Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 2004; 48: 1803-1806
  • 36 Francisco CS, Messiano GB, Lopes LMX, Tininis AG, de Oliveira JE, Capellari jr L. Classification of Aristolochia species based on GC-MS and chemometric analyses of essential oils. Phytochemistry 2008; 69: 168-175
  • 37 Pereira MDP, da Silva T, Lopes LMX, Krettli AU, Madureira LS, Zukerman-Schpector J. 4,5-seco-guaiane and a nine-membered sesquiterpene lactone from Holostylis reniformis . Molecules 2012; 17: 14046-14057
  • 38 Van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 1963; 11: 463-471
  • 39 Adams RP. Identification of essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed. New York: Allured Publishing Corporation; 2009
  • 40 El-Sayed AM. The Pherobase: Database of pheromones and semiochemicals. Available at. http://www.pherobase.com Accessed March 10, 2016
  • 41 InfoMetrix. Pirouette® for Windows, Version 3.11. Woodinville, USA, 2003.
  • 42 Bertrand D, Scotter CNG. Application of multivariate analyses to NIR spectra of gelatinized starch. Appl Spectrosc 1992; 46: 1420-1425
  • 43 Zauli-Nascimento RC, Miguel DC, Yokoyama-Yasunaka JKU, Pereira LIA, de Oliveira MAP, Ribeiro-Dias F, Dorta ML, Uliana SRB. In vitro sensitivity of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis Brazilian isolates to meglumine antimoniate and amphotericin B. Trop Med Int Health 2010; 15: 68-76
  • 44 Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976; 193: 673-675
  • 45 Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986; 89: 271-277