Klin Monbl Augenheilkd 2019; 236(05): 682-690
DOI: 10.1055/s-0043-105266
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Die alternde Retina im Kontext zerebraler neurodegenerativer Erkrankungen

The Aging Retina in the Context of Cerebral Neurodegenerative Diseases
Michael R. R. Böhm
1   Klinik für Augenheilkunde, Universitätsklinikum Essen
,
Solon Thanos
2   Institut für Experimentelle Ophthalmologie, Westfälische Wilhelms-Universität Münster
› Author Affiliations
Further Information

Publication History

eingereicht 22 December 2016

akzeptiert 16 January 2017

Publication Date:
09 June 2017 (online)

Zusammenfassung

Hintergrund Neurodegenerative (ND) Erkrankungen bilden eine heterogene Gruppe von Affektionen des Nervensystems mit unterschiedlicher Ätiologie, Lokalisation und Verlauf. Am bekanntesten sind aus klinischer und sozioökonomischer Sicht die zerebralen Erkrankungen von Alzheimer (AD) und weiteren Demenzen, weil ihre Prävalenz in der alternden Bevölkerung erheblich hoch ist und weil die ND nicht kausal therapierbar sind. In dieser Übersicht sollen die ND-Erkrankungen aus der ophthalmologischen Sicht und im Bezug zu analogen Erkrankungen der Netzhaut erläutert werden.

Material und Methoden Bezüglich der epidemiologischen Lage wurde die neurologische Bibliografie zu den ND berücksichtigt. Hinzu kommen ophthalmologische Daten zu retinaassoziierten ND insbesondere im Alter. Letztlich wird die eigene Datenlage bez. gemeinsamer zellulärer und molekularer Biomarker für sowohl retinales als auch zerebrales Altern herangezogen.

Ergebnisse Die Alzheimererkrankung ist aus neurologischer Sicht die häufigste ND-Erkrankung mit steigender Prävalenz. Die altersbedingte Makuladegeneration (AMD) und das Glaukom sind die häufigsten retinalen ND mit ebenfalls steigender Prävalenz. Sowohl im Gehirn als auch in der Retina gehen Neuronen irreversibel zugrunde und es treten gliale, mikrogliale, extrazelluläre und vaskuläre Reaktionen hinzu, die entweder als Atrophien mit Plaquebildungen (AD) oder als Drusen mit späterer ödematöser Transformation mit Makulaneoangiogenese (AMD) oder als Optikusdegeneration (OD) imponieren. Auf zellulärer Ebene ist die strukturelle und funktionelle Irreversibilität allen gemeinsam, wobei die Therapie sich palliativ zur Erhaltung vorhandener Restfunktion gestaltet. Gezielte präventive Behandlungen sind noch nicht hinreichend identifiziert worden. Es sind auf molekularer Ebene gemeinsame Marker analysiert worden, um das Verständnis dieser Degenerationen zu vertiefen und gezieltere Behandlungsmöglichkeiten aufzuzeigen.

Schlussfolgerung Im Vergleich entspricht die zerebrale AD eher der retinalen AMD, die zerebrale allgemeine Demenz der allgemeinen Sehvermögenseinschränkung im Alter und die Optikusdegeneration der retrookulären kompressionsbedingten zerebralen Atrophie. Gemeinsame Aspekte sind vorhanden und werden diskutiert.

Abstract

Background Neurodegenerative diseases (ND) consist of divers affections of the central nervous system related to etiology, localization, and of course of the disease. Alzheimerʼs disease (AD) and related dementias are best investigated together with socioeconomic conditions and play an important role in its high prevalence. This work will present ND diseases in the context of analogous retinal degeneration mechanisms and ophthalmological diseases.

Methods Based on epidemiological data, the current neurological bibliography of ND has been considered. Additional ophthalmological data containing age-related retinal diseases were included in a comparative manner. Moreover, our own data dealing with similarities of cellular and molecular biomarkers in the retinal and cerebral aging process were included.

Results AD is the most important neurological ND disease with increasing prevalence. Age-related macular degeneration (AMD) and glaucoma are the most common retinal diseases with ND background and have an increasing prevalence. Irreversible loss of neurons, together with glial, microglial, extracellular, and vascular reactions are found both in the brain and retina and can show atrophic signs with onsets of plaques (AD), drusen (AMD) or optic degenerations. Alterations of cellular conditions result in irreversible functional impairments. Current therapeutic options preserve only residual function and preventive possibilities are actually missing. Molecular biomarkers have been identified to endorse a better understanding of ND and to provide new therapeutic options.

Conclusions Comparison of cerebral AD shows similarities with retinal AMD, and cerebral dementias are comparable with the physiological age-related impairment of visual acuity. Optic degeneration may be similar to cerebral atrophy associated with retroocular compression. Improved understanding of pathogenetic mechanisms of cerebral and retinal diseases may help to establish preventive and therapeutic concepts in the future.

 
  • Literatur

  • 1 Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 2016; 12: 15-27
  • 2 Le Gall JY, Ardaillou R. The biology of aging. Bull Acad Natl Med 2009; 193: 365-402
  • 3 Bird TD. Alzheimer Disease Overview. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K. eds. GeneReviews® . Seattle (WA): University of Washington, Seattle; 1993
  • 4 Poon DC, Ho YS, Chiu K. et al. Sickness: From the focus on cytokines, prostaglandins, and complement factors to the perspectives of neurons. Neurosci Biobehav Rev 2015; 57: 30-45
  • 5 Bateman R. Alzheimerʼs disease and other dementias: advances in 2014. Lancet Neurol 2015; 14: 4-6
  • 6 Nebbioso M, Scarsella G, Librando A. et al. Biomolecular modulation of neurodegenerative events during ageing. Oxid Med Cell Longev 2015; 2015: 978654
  • 7 Kiorpes L. The puzzle of visual development: behavior and neural limits. J Neurosci 2016; 36: 11384-11393
  • 8 Böhm MR, Melkonyan H, Thanos S. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats. Front Neuroanat 2015; 9: 16
  • 9 Böhm MRR. Neuroprotektion im Kontext des alternden visuellen Systems [Habilitation]. Essen: Medizinische Fakultät der Universität Duisburg/Essen; 2015: 13-14
  • 10 Bird M, Luszcz M. Enhancing memory performance in Alzheimerʼs disease: acquisition assistance and cue effectiveness. J Clin Exp Neuropsychol 1993; 15: 921-932
  • 11 Bird TD, Nemens EJ, Kukull WA. Conjugal Alzheimerʼs disease: is there an increased risk in offspring?. Ann Neurol 1993; 34: 396-399
  • 12 Rogan S, Lippa CF. Alzheimerʼs disease and other dementias: a review. Am J Alzheimers Dis Other Demen 2002; 17: 11-17
  • 13 Javaid FZ, Brenton J, Guo L. et al. Visual and ocular manifestations of Alzheimerʼs disease and their use as biomarkers for diagnosis and progression. Front Neurol 2016; 7: 55
  • 14 Böhm MR, Thomasen H, Parnitzke F. et al. [Clinical, morphological and molecular biological characteristics of the aging eye]. Ophthalmologe 2017; 114: 98-107
  • 15 Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4: 877-886
  • 16 Sanes JR, Zipursky SL. Design principles of insect and vertebrate visual systems. Neuron 2010; 66: 15-36
  • 17 Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature 2010; 464: 529-535
  • 18 Böhm MR, Mertsch S, König S. et al. Macula-less rat and macula-bearing monkey retinas exhibit common lifelong proteomic changes. Neurobiol Aging 2013; 34: 2659-2675
  • 19 Bambo MP, Garcia-Martin E, Guiterrez-Ruiz F. et al. Analysis of optic disk color changes in Alzheimerʼs disease: a potential new biomarker. Clin Neurol Neurosurg 2015; 132: 68-73
  • 20 Koronyo Y, Salumbides BC, Black KL. et al. Alzheimerʼs disease in the retina: imaging retinal aβ plaques for carly diagnosis and therapy assessment. Neurodegener Dis 2012; 10: 285-293
  • 21 Sivak JM. The aging eye: common degenerative mechanisms between the Alzheimerʼs brain and retinal disease. Invest Ophthalmol Vis Sci 2013; 54: 871-880
  • 22 Leger F, Fernagut PO, Canron MH. et al. Protein aggregation in the aging retina. J Neuropathol Exp Neurol 2011; 70: 63-68
  • 23 Schwartz R, Loewenstein A. Early detection of age related macular degeneration: current status. Int J Retina Vitreous 2015; 1: 20
  • 24 Thornton J, Edwards R, Mitchell P. et al. Smoking and age-related macular degeneration: a review of association. Eye (Lond) 2005; 19: 935-944
  • 25 Zhang M, Baird PN. A decade of age-related macular degeneration risk models: What have we learned from them and where are we going?. Ophthalmic Genet 2016; DOI: 10.1080/13816810.2016.1227451.
  • 26 Levy O, Lavalette S, Hu SJ. et al. APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci 2015; 35: 13568-13576
  • 27 Handa JT. How does the macula protect itself from oxidative stress?. Mol Aspects Med 2012; 33: 418-435
  • 28 Garcia TY, Gutierrez M, Reynolds J. et al. Modeling the dynamic AMD-associated chronic oxidative stress changes in human ESC and iPSC-derived RPE cells. Invest Ophthalmol Vis Sci 2015; 56: 7480-7488
  • 29 Turski GN, Schmitz-Valckenberg S, Holz FG. et al. [Retinal imaging of macula and optic disc in neurodegenerative diseases]. Ophthalmologe 2017; 114: 114-119
  • 30 Williams MA, Silvestri V, Craig D. et al. The prevalence of age-related macular degeneration in Alzheimerʼs disease. J Alzheimers Dis 2014; 42: 909-914
  • 31 Williams MA, McGowan AJ, Cardwell CR. et al. Retinal microvascular network attenuation in Alzheimerʼs disease. Alzheimers Dement (Amst) 2015; 1: 229-235
  • 32 Frost S, Guymer R, Aung KZ. et al. Alzheimerʼs disease and the early signs of age-related macular degeneration. Curr Alzheimer Res 2016; 13: 1259-1266
  • 33 Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimerʼs disease. Prog Retin Eye Res 2011; 30: 217-238
  • 34 Biscetti L, Luchetti E, Vergaro A. et al. Associations of Alzheimerʼs disease with macular degeneration. Front Biosci (Elite Ed) 2017; 9: 174-191
  • 35 Aslam A, Peto T, Barzegar-Befroei N. et al. Assessing peripheral retinal drusen progression in Alzheimerʼs dementia: a pilot study using ultra-wide field imaging. Invest Ophthalmol Vis Sci 2014; 55: 659
  • 36 Johnson LV, Leitner WP, Rivest AJ. et al. The Alzheimerʼs A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A 2002; 99: 11830-11835
  • 37 Wang J, Ohno-Matsui K, Yoshida T. et al. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: Another mechanism of complement activation in age-related macular degeneration. J Cell Physiol 2009; 220: 119-128
  • 38 Dentchev T, Milam AH, Lee VM. et al. Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 2003; 9: 184-190
  • 39 Rabin DM, Rabin RL, Blenkinsop TA. et al. Chronic oxidative stress upregulates drusen-related protein expression in adult human RPE stem cell-derived RPE cells: a novel culture model for dry AMD. Aging (Albany NY) 2013; 5: 51-66
  • 40 Stein-Streilein J. Mechanisms of immune privilege in the posterior eye. Int Rev Immunol 2013; 32: 42-56
  • 41 Parmeggiani F, Romano MR, Costagliola C. et al. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm 2012; 2012: 546786
  • 42 Shaw PX, Stiles T, Douglas C. et al. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol Sci 2016; 3: 196-221
  • 43 Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res 2009; 28: 348-368
  • 44 Chen H, Lukas TJ, Du N. et al. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci 2009; 50: 1895-1902
  • 45 Boya P, Esteban-Martinez L, Serrano-Puebla A. et al. Autophagy in the eye: development, degeneration, and aging. Prog Retin Eye Res 2016; 55: 206-245
  • 46 Handa JT. How does the macula protect itself from oxidative stress?. Mol Aspects Med 2012; 33: 418-435
  • 47 Katz B, Rimmer S. Ophthalmologic manifestations of Alzheimerʼs disease. Surv Ophthalmol 1989; 34: 31-43
  • 48 Sadun AA, Bassi CJ. Optic nerve damage in Alzheimerʼs disease. Ophthalmology 1990; 97: 9-17
  • 49 Berisha F, Feke GT, Trempe CL. et al. Retinal abnormalities in early Alzheimerʼs disease. Invest Ophthalmol Vis Sci 2007; 48: 2285-2289
  • 50 Cheung CY, Ong YT, Ikram MK. et al. Microvascular network alterations in the retina of patients with Alzheimerʼs disease. Alzheimers Dement 2014; 10: 135-142
  • 51 Feke GT, Hyman BT, Stern RA. et al. Retinal blood flow in mild cognitive impairment and Alzheimerʼs disease. Alzheimers Dement (Amst) 2015; 1: 144-151
  • 52 Hinton DA, Sadun AA, Blanks JC. et al. Optic-nerve degeneration in Alzheimerʼs disease. N Engl J Med 1986; 315: 485-487
  • 53 Kirbas S, Turkyilmaz K, Anlar O. et al. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 2013; 33: 58-61
  • 54 Iseri PK, Altinaş O, Tokay T. et al. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 2006; 26: 18-24
  • 55 Coppola G, Di Renzo A, Ziccardi L. et al. Optical coherence tomography in Alzheimerʼs disease: a meta-analysis. PLoS One 2015; 10: e0134750
  • 56 Ong YT, Hilal S, Cheung CY. et al. Retinal neurodegeneration on optical coherence tomography and cerebral atrophy. Neurosci Lett 2015; 584: 12-16
  • 57 Liu B, Rasool S, Yang Z. et al. Amyloid-peptide vaccinations reduce β-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimerʼs transgenic mice. Am J Pathol 2009; 175: 2099-2110
  • 58 Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV. et al. Identification of amyloid plaques in retinas from Alzheimerʼs patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 2011; 54 (Suppl. 01) S204-S217
  • 59 Löffler KU, Edward DP, Tso MO. Immunoreactivitiy against tau, amyloid precursor protein and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci 1995; 36: 24-31
  • 60 Lu Y, Li Z, Zhang X. et al. Retina nerve fiber layer structure abnormalities in early Alzheimerʼs disease: evidence in optical coherence tomography. Neurosci Lett 2010; 480: 69-72
  • 61 Ding JJ, Lin J, Mace BE. et al. Targeting age-related macular degeneration with Alzheimerʼs disease based immunotherapies: anti-amyloid-b antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 2008; 48: 339-345
  • 62 Zhao Y, Bhattacharjee S, Jones BM. et al. Beta-amyloid precursor protein (βAPP) processing in Alzheimerʼs disease (AD) and age-related macular degeneration (AMD). Mol Neurobiol 2015; 52: 533-544
  • 63 Ritchie CW, Peto T, Barzegar-Befroei N. et al. Peripheral retinal drusen as a potential surrogate marker for Alzheimerʼs dementia: a pilot study using ultra-wide angle imaging. Invest Ophthalmol Vis Sci 2011; 52: 6683
  • 64 Bruban J, Glotin AL, Dinet V. et al. Amyloid-beta(1–42) alters structure and function of retinal pigmented epithelial cells. Aging Cell 2009; 8: 162-177
  • 65 Park SW, Kim JH, Park SM. et al. RAGE mediated intracellular Aβ uptake contributes to the breakdown of tight junction in retinal pigment epithelium. Oncotarget 2015; 6: 35263-35273
  • 66 Dinet V, Bruban J, Chalour N. et al. Distinct effects of inflammation on gliosis osmohomeostasis, and vascular integrity during amyloid beta-induced retinal degeneration. Aging Cell 2012; 11: 683-693
  • 67 Blanks JC, Hinton DR, Sadun AA. et al. Retinal ganglion cell degeneration in Alzheimerʼs disease. Brain Res 1989; 501: 364-372
  • 68 Blanks JC, Schmidt SY, Torigoe Y. et al. Retinal pathology in Alzheimerʼs disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 1996; 17: 385-395
  • 69 Salobrar-Garcia E, Hoyas I, Leal M. et al. Analysis of retinal peripapillary segmentation in early Alzheimerʼs disease patients. Biomed Res Int 2015; 2015: 636548
  • 70 Sadun AA, Bassi CJ. Optic nerve damage in Alzheimerʼs disease. Ophthalmology 1990; 97: 9-17
  • 71 Unterlauft JD, Böhm MR. Die Rolle des alternden visuellen Systems bei den Glaukomen. Ophthalmologe 2017; 114: 108-113
  • 72 Böhm MR, Schallenberg M, Brockhaus K. et al. The pro-inflammatory role of high-mobility group box 1 protein (HMGB-1) in photoreceptors and retinal explants exposed to elevated pressure. Lab Invest 2016; 96: 409-427