Planta Med 2017; 83(14/15): 1194-1199
DOI: 10.1055/s-0043-108910
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

An Intramolecular CAr–H•••O=C Hydrogen Bond and the Configuration of Rotenoids[*]

Yulin Ren
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
,
Judith C. Gallucci
2   Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
,
A. Douglas Kinghorn
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
› Author Affiliations
Further Information

Publication History

received 08 February 2017
revised 26 March 2017

accepted 04 April 2017

Publication Date:
20 April 2017 (online)

Abstract

Over the past half a century, the structure and configuration of the rotenoids, a group of natural products showing multiple promising bioactivities, have been established by interpretation of their NMR and electronic circular dichroism spectra and confirmed by analysis of single-crystal X-ray diffraction data. The chemical shift of the H-6′ 1H NMR resonance has been found to be an indicator of either a cis or trans C/D ring system. In the present study, four structures representing the central rings of a cis-, a trans-, a dehydro-, and an oxadehydro-rotenoid have been plotted using the Mercury program based on X-ray crystal structures reported previously, with the conformations of the C/D ring system, the local bond lengths or interatomic distances, hydrogen bond angles, and the H-6′ chemical shift of these compounds presented. It is shown for the first time that a trans-fused C/D ring system of rotenoids is preferred for the formation of a potential intramolecular C6′–H6′•••O=C4 H-bond, and that such H-bonding results in the 1H NMR resonance for H-6′ being shifted downfield.

* Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding contributions to natural product research.


Supporting Information

 
  • References

  • 1 Roark RC. Present status of rotenone and rotenoids. J Econ Entomol 1941; 34: 684-691
  • 2 Crombie L. Rotenoids and their biosynthesis. Nat Prod Rep 1984; 1: 3-19
  • 3 Crombie L, Whiting DA. Biosynthesis in the rotenoid group of natural products: applications of isotope methodology. Phytochemistry 1998; 49: 1479-1507
  • 4 Garcia J, Barluenga S, Beebe K, Neckers L, Winssinger N. Concise modular asymmetric synthesis of deguelin, tephrosin and investigation into their mode of action. Chem Eur J 2010; 16: 9767-9771
  • 5 Chang DJ, An H, Kim K, Kim HH, Jung J, Lee JM, Kim NJ, Han YT, Yun H, Lee S, Lee G, Lee S, Lee JS, Cha JH, Park JH, Park JW, Lee SC, Kim SG, Kim JH, Lee HY, Kim KW, Suh YG. Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J Med Chem 2012; 55: 10863-10884
  • 6 Yamamoto I. Mode of action of pyrethroids, nicotinoids, and rotenoids. Ann Rev Entomol 1970; 15: 257-272
  • 7 Hollingworth RM, Ahammadsahib KI. Inhibitors of respiratory complex I: mechanisms, pesticidal actions and toxicology. Rev Pestic Toxicol 1995; 3: 277-302
  • 8 Takashima J, Chiba N, Yoneda K, Ohsaki A. Derrisin, a new rotenoid from Derris malaccensis plain and anti-Helicobacter pylori activity of its related constituents. J Nat Prod 2002; 65: 611-613
  • 9 Fang N, Casida JE. Anticancer action of cubé insecticide: correlation for rotenoid constituents between inhibition of NADH : ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc Natl Acad Sci U S A 1998; 95: 3380-3384
  • 10 Bairwa K, Jachak SM. Anti-inflammatory potential of a lipid-based formulation of a rotenoid-rich fraction prepared from Boerhavia diffusa . Pharm Biol 2015; 53: 1231-1238
  • 11 Yenesew A, Derese S, Midiwo JO, Oketch-Rabah HA, Lisgarten J, Palmer R, Heydenreich M, Peter MG, Akala H, Wangui J, Liyala P, Waters NC. Anti-plasmodial activities and X-ray crystal structures of rotenoids from Millettia usaramensis subspecies usaramensis . Phytochemistry 2003; 64: 773-779
  • 12 Upegui Y, Gil JF, Quiñones W, Torres F, Escobar G, Robledo SM, Echeverri F. Preparation of rotenone derivatives and in vitro analysis of their antimalarial, antileishmanial and selective cytotoxic activities. Molecules 2014; 19: 18911-18922
  • 13 Fang N, Rowlands JC, Casida JE. Anomalous structure-activity relationships of 13-homo-13-oxarotenoids and 13-homo-13-oxadehydrorotenoids. Chem Res Toxicol 1997; 10: 853-858
  • 14 Rowlands JC, Casida JE. NADH : ubiquinone oxidoreductase inhibitors block induction of ornithine decarboxylase activity in MCF-7 human breast cancer cells. Pharmacol Toxicol 1998; 83: 214-219
  • 15 Fang N, Casida JE. Cubé resin insecticide: identification and biological activity of 29 rotenoid constituents. J Agric Food Chem 1999; 47: 2130-2136
  • 16 Blatt CTT, Chávez D, Chai HB, Graham JG, Cabieses F, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD. Cytotoxic flavonoids from the stem bark of Lonchocarpus aff. fluvialis . Phytother Res 2002; 16: 320-325
  • 17 Bueno Pérez L, Li J, Lantvit DD, Pan L, Ninh TN, Chai HB, Soejarto DD, Swanson SM, Lucas DM, Kinghorn AD. Bioactive constituents of Indigofera spicata . J Nat Prod 2013; 76: 1498-1504
  • 18 Bueno Pérez L, Pan L, Muñoz Acuña U, Li J, Chai HB, Gallucci JC, Ninh TN, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD. Caeruleanone A, a rotenoid with a new arrangement of the D-ring from the fruits of Millettia caerulea . Org Lett 2014; 16: 1462-1465
  • 19 Ren Y, Benatrehina PA, Muñoz Acuña U, Yuan C, Chai HB, Ninh TN, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD. Isolation of bioactive rotenoids and isoflavonoids from the fruits of Millettia caerulea . Planta Med 2016; 82: 1096-1104
  • 20 Ye H, Fu A, Wu W, Li Y, Wang G, Tang M, Li S, He S, Zhong S, Lai H, Yang J, Xiang M, Peng A, Chen L. Cytotoxic and apoptotic effects of constituents from Millettia pachycarpa Benth. Fitoterapia 2012; 83: 1402-1408
  • 21 Baba Y, Fujii M, Maeda T, Suzuki A, Yuzawa S, Kato Y. Deguelin induces apoptosis by targeting both EGFR-Akt and IGF1R-Akt pathways in head and neck squamous cell cancer cell lines. Biomed Res Int 2015; 2015: 657179
  • 22 Udeani GO, Gerhäuser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD, Moriarty RM, Pezzuto JM. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res 1997; 57: 3424-3428
  • 23 Hsu YC, Chiang JH, Yu CS, Hsia TC, Wu RSC, Lien JC, Lai KC, Yu FS, Chung JG. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model. Environ Toxicol 2017; 32: 84-98
  • 24 Parente JP, Pereira da Silva B. Naturally occurring rotenoids (1982–1999). Recent Res Dev Phytochem 2001; 5: 153-167
  • 25 Crombie L, Lown JW. Proton magnetic studies of rotenone and related compounds. J Chem Soc 1962; 775-781
  • 26 Abidi SL, Abidi MS. 13C NMR spectral characterization of epimeric rotenone and some related tetrahydrobenzopyranofurobenzopyranones. J Heterocyclic Chem 1983; 20: 1687-1692
  • 27 Yang SP, Chen HM, Zhang F, Chen QQ, Yu XB, Huang JG, Xu HH. Rotenone-acetic acid (2/1). Acta Cryst 2004; E60: o532-o534
  • 28 Büchi G, Crombie L, Godin PJ, Kaltenbronn JS, Siddalingaiah KS, Whiting DA. The absolute configuration of rotenone. J Chem Soc 1961; 2843-2860
  • 29 Begley MJ, Crombie L, Whiting DA. Conformation and absolute configuration of rotenone: examination of 8′-bromorotenone by X-ray methods. J Chem Soc Chem Commun 1975; 20: 850-851
  • 30 Verbit L, Clark-Lewis JW. Optically active aromatic chromophores – VIII: Studies in the isoflavonoid and rotenoid series. Tetrahedron 1968; 24: 5519-5527
  • 31 Kostova I, Berova N, Ivanov P, Mikhova B, Rakovska R. Stereochemical studies of some 12a-substituted rotenoid derivatives. Croatica Chem Acta 1991; 64: 637-647
  • 32 Slade D, Ferreira D, Marais JPJ. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 2005; 66: 2177-2215
  • 33 Yenesew A, Midiwo JO, Waterman PG. Rotenoids, isoflavones and chalcones from the stem bark of Millettia usaramensis subspecies usaramensis . Phytochemistry 1998; 47: 295-300
  • 34 Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J. Mercury: Visualization and analysis of crystal structures. J Appl Cryst 2006; 39: 453-457
  • 35 Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Cryst 2016; B72: 171-179
  • 36 Fang N, Casida JE. Novel bioactive cube insecticide constituents: isolation and preparation of 13-homo-13-oxa-6a,12a-dehydrorotenoids. J Org Chem 1997; 62: 350-353
  • 37 Teerawatananond T, Chaichit N, Muangsin N. Co-crystal structure of 11-hydroxy-2,3,9-trimethoxy-6H-chromeno[3,4-b]chromen-12-one and 11-hydroxy-2,3,9-trimethoxy-chromeno[3,4-b]chromene-6,12-dione. J Chem Crystallogr 2010; 40: 591-596
  • 38 Bai L, Jiang H, Kang T, Zhang H, Jiang Z, Zhao Z. Pharmacognostical evaluation of Arctii Fructus (5). Chemical constituents from fruits of Amorpha fruticosa . Nat Med 2004; 58: 275-277
  • 39 Carlson DG, Weisleder D, Tallent WH. NMR investigations of rotenoids. Tetrahedron 1973; 29: 2731-2741
  • 40 Koch U, Popelier PLA. Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 1995; 99: 9747-9754
  • 41 Cairo RR, Stevens AMP, de Oliveira TD, Batista AA, Castellano EE, Duque J, Soria DB, Fantoni AC, Corrêa RS, Erben MF. Understanding the conformational changes and molecular structure of furoyl thioureas upon substitution. Spectrochim Acta A Mol Biomol Spect 2017; 176: 8-17
  • 42 Semenok DV, Medvedev JJ, Avdontceva MS, Selivanov SI, Sieler J, Mereshchenko AS, Nikolaev VA. Experimental evidence of intramolecular CAr–H•••O=C hydrogen bonds in the structure of (diaryl)tetrahydrofuranones using spectroscopic tools. Helv Chim Acta 2016; 99: 716-723
  • 43 Ash EL, Sudmeier JL, Day RM, Vincent M, Torchilin EV, Haddad KC, Bradshaw EM, Sanford DG, Bachovchin WW. Unusual 1H NMR chemical shifts support (His) Cε1–H•••O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. Proc Natl Acad Sci U S A 2000; 97: 10371-10376
  • 44 Begley MJ, Crombie L, Hadi HBA, Josephs JL. Synthesis of trans-B/C-rotenoids: X-ray and NMR data for cis- and trans-forms of isorotenone. J Chem Soc Perkin Trans 1 1993; 2605-2613
  • 45 Andrei CC, Vieira PC, Fernandes JB, da Silva MFDGF, Fo ER. Dimethylchromene rotenoids from Tephrosia candida . Phytochemistry 1997; 46: 1081-1085
  • 46 Abraham MH, Acree WE, Earp CE, Vladimirova A, Whaley WL. Studies on the hydrogen bond acidity, and other descriptors and properties for hydroxyflavones and hydroxyisoflavones. J Mol Liq 2015; 208: 363-372
  • 47 Taylor R, Kennard O, Versichel W. The geometry of the N-H•••O : C hydrogen bond. 3. Hydrogen-bond distances and angles. Acta Cryst 1984; B40: 280-288