RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775465
Modular Access to 1,3-Diboronates via Cu-Catalyzed Borylalkylation of Activated Alkenes
The authors are grateful for the financial support that was provided by the National Natural Science Foundation of China (Grant No. 22001203, 22471209), the Key Research and Development Projects of Shaanxi Province (Grant No. 2023-YBSF-186), the Youth Project of Basic Science Research Institute of Shaanxi Province (Grant No. 22JHQ013), the Fundamental Research Funds for the Central Universities (Grant No. xtr052024013, xyz2022023080), and the funds from Xi’an Jiaotong University (XJTU).

Abstract
1,3-Bis-(boryl)alkanes are useful building blocks in organic synthesis, which enables a series of functionalizations to build up molecular complexity for the synthesis of target molecules. However, modular and practical synthesis of such building blocks remains a challenge. Herein, we report an efficient method for the synthesis of 1,3-diboronates via Cu-catalyzed borylalkylation of alkenes using iodomethyl boronate as the electrophile. This reaction provides a wide range of 1,3-bis-(boryl)alkanes in high efficiency under simple reaction conditions. Notably, this reaction exhibits high modularity, and large-scale reaction further demonstrated its practicability.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775465.
- Supporting Information
Publikationsverlauf
Eingereicht: 18. Dezember 2024
Angenommen nach Revision: 06. März 2025
Artikel online veröffentlicht:
17. Juli 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Suzuki A. J. Organomet. Chem. 1999; 576: 147
- 1b Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
- 1c Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
- 1d Kaur P, Khatik LG, Nayak KS. Curr. Org. Synth. 2017; 14: 665
- 2a Kabatas S, Agüi-Gonzalez P, Saal K.-A, Jähne S, Opazo F, Rizzoli SO, Phan NT. N. Angew. Chem. Int. Ed. 2019; 58: 3438
- 2b Wade CR, Broomsgrove AE. J, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 110: 3958
- 2c Fu Y, Qiu F, Zhang F, Mai Y, Wang Y, Fu S, Tang R, Zhuang X, Feng X. Chem. Commun. 2015; 51: 5298
- 3a Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. Chem. Rev. 2024; 124: 2441
- 3b Messner K, Vuong B, Tranmer GK. Pharmaceuticals 2022; 15: 264
- 3c Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Van Veldhuizen P, Verma A, Weiss LM, Evans T. Future Med. Chem. 2013; 5: 653
- 4a Endo K, Hirokami M, Shibata T. J. Org. Chem. 2010; 75: 3469
- 4b Coombs JR, Zhang L, Morken JP. Org. Lett. 2015; 17: 1708
- 4c Shi Y, Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 3455
- 4d Crudden CM, Ziebenhaus C, Rygus JP. G, Ghozati K, Unsworth PJ, Nambo M, Voth S, Hutchinson M, Laberge VS, Maekawa Y, Imao D. Nat. Commun. 2016; 7: 11065
- 4e Ferris GE, Hong K, Roundtree IA, Morken JP. J. Am. Chem. Soc. 2013; 135: 2501
- 5a Nallagonda R, Padala K, Masarwa A. Org. Biol. Chem. 2018; 16: 1050
- 5b Wu C, Wang J. Tetrahedron Lett. 2018; 59: 2128
- 6a Jiang X.-M, Ji C.-L, Ge J.-F, Zhao J.-H, Zhu X.-Y, Gao D.-W. Angew. Chem. Int. Ed. 2024; 63: e202318441
- 6b Viso A, Fernández de la Pradilla R, Tortosa M. ACS Catal. 2022; 12: 10603
- 6c Carbó JJ, Fernández E. Chem. Commun. 2021; 57: 11935
- 6d Wang X, Wang Y, Huang W, Xia C, Wu L. ACS Catal. 2021; 11: 1
- 6e Wen Y, Deng C, Xie J, Kang X. Molecules 2019; 24: 101
- 7a Fawcett A, Nitsch D, Ali M, Bateman JM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 14663
- 7b Blair DJ, Tanini D, Bateman JM, Scott HK, Myers EL, Aggarwal VK. Chem. Sci. 2017; 8: 2898
- 7c Pujol A, Whiting A. J. Org. Chem. 2017; 82: 7265
- 7d Wang D, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2020; 142: 9119
- 7e Tan BB, Hu M, Ge S. Angew. Chem. Int. Ed. 2023; 62: e202307176
- 8a Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265
- 8b Sun S.-Z, Börjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
- 8c Zhou J, Wang D, Xu W, Hu Z, Xu T. J. Am. Chem. Soc. 2023; 145: 2081
- 8d Wang D, Xu T. Synlett 2023; 34: 2085
- 9 You C, Studer A. Angew. Chem. Int. Ed. 2020; 59: 17245
- 10 Sun S.-Z, Talavera L, Spieß P, Day CS, Martin R. Angew. Chem. Int. Ed. 2021; 60: 11740
- 11a Hemming D, Fritzemeier R, Westcott SA. Santos W. L, Steel PG. Chem. Soc. Rev. 2018; 47: 7477
- 11b Yang X, Kalita SJ, Maheshuni S, Huang YY. Coord. Chem. Rev. 2019; 392: 35
- 11c Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. ACS Catal. 2020; 10: 11578
- 11d Zhu Y.-S, Li J.-X, Zhao H.-T, Su B. Chin. J. Chem. 2024; 42: 3588
- 11e Chen B, Cao P, Liao Y, Wang M, Liao J. Org. Lett. 2018; 20: 1346
- 11f Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
- 11g Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
- 11h Su W, Gong T.-J, Lu X, Xu M.-Y, Yu C.-G, Xu Z.-Y, Yu H.-Z, Xiao B, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 12957
- 12 Larouche-Gauthier R, Elford TG. Aggarwal V. K. J. Am. Chem. Soc. 2011; 133: 16794
- 13 Armstrong RJ, Niwetmarin W, Aggarwal VK. Org. Lett. 2017; 19: 2762
Selected reviews:
Selected examples: