RSS-Feed abonnieren
DOI: 10.1055/s-2002-19340
A Mild and Environmentally Benign Synthetic Protocol for Catalytic Hydrolysis of Thioglycosides
Publikationsverlauf
Publikationsdatum:
01. Februar 2007 (online)

Abstract
A wide variety of thioglycosides 1 are selectively hydrolyzed to the corresponding 1-hydroxy sugars 2 in good yields at 0-5 °C, by employing V2O5-H2O2 catalyzed oxidation of ammonium bromide in CH2Cl2-H2O solvent system. The methodology is very mild, environmentally benign, efficient and highly chemoselective. No side reactions such as bromination either at the anomeric position or double bond or oxidation at the sulfur are encountered.
Key words
thioglycosides - 1-hydroxy sugars - hydrolysis - vanadium pentoxide - hydrogen peroxide - ammonium bromide
- 1
Kunz K. Angew. Chem., Int. Ed. Engl. 1987, 26: 294 - 2
Schmidt RR. Pure Appl. Chem. 1989, 61: 1257 - 3
Paulsen H. Angew. Chem., Int. Ed. Engl. 1990, 29: 823 - 4
Barresi F.Hindsgaul O. J. Carbohydr. Chem. 1995, 14: 1043 - 5
Schmidt RR.Kinzy W. Adv. Carbohydr. Chem. Biochem. 1994, 50: 21 ; and references therein - 6
Roush WR.Lin X.-F. J. Am. Chem. Soc. 1995, 117: 2236 -
7a
Schmidt OT.Schmadel J.Auer T. Justus Liebigs Ann. Chem. 1961, 649 -
7b
Glaudemans CPJ.Fletcher HG. In Methods in Carbohydrate Chemistry Vol. 6:Whistler RL.Wolfrom ML. Academic Press; New York: 1972. p.372 -
7c
Kaesbeck L.Kessler H. Liebigs Ann. Chem., Recueil. 1997, 169 -
8a
Austin PW.Hardy FE.Buchnan JH.Baddiley JJ. Org. Chem. 1965, 30: 1419 -
8b
Koto S.Morishima N.Miyata Y.Zen S. Bull. Chem. Soc. Jpn. 1976, 49: 2639 - 9
Boons G.-J. In Carbohydrate ChemistryBoons G.-J. Blackie Academic and Professional; London: 1998. p.126 ; and references therein - 10
Mueller M.Huchel U.Geyer A.Schmidt RR. J. Org. Chem. 1999, 64: 6190 - 11
Garegg PJ. Adv. Carbohydr. Chem. Biochem. 1997, 52: 179 - 12
Wolfrom ML.Groebke W. J. Org. Chem. 1963, 28: 2986 - 13
Weygand F.Ziemann HK.Bestmann HI. Chem. Ber. 1958, 91: 2534 - 14
Nicolaou KC.Dolle RE.Papahatis DP.Randall JL. J. Am. Chem. Soc. 1984, 106: 4189 - 15
Schmidt RR. Angew. Chem., Int. Ed. Engl. 1986, 25: 212 - 17
Ogawa T,Koike K,Numata M,Sugimoto M, andNakahara M. inventors; Japanese Patent JP 8835591. -
18a
Motawis MS.Marcussan J.Moeller BL. J. Carbohydr. Chem. 1995, 14: 1279 -
18b
Kaesbeck L.Kessler H. Liebigs Ann. Chem. 1997, 169 - 19
Uchiro H.Wakiyama Y.Mukaiyama T. Chem. Lett. 1998, 567 - 20
Vitler H. Phytochemistry 1984, 23: 1387 - 21
Butler A.Walker JV. Chem. Rev. 1993, 93: 1937 -
22a
Mondal E.Bose G.Sahu PR.Khan AT. Chem. Lett. 2001, 1158 -
22b
Bora U.Bose G.Chaudhuri MK.Dhar SS.Gopinath R.Khan AT.Patel BK. Org. Lett. 2000, 2: 247 - 25
Olah GA.Narang SC.Salen GF. Synthesis 1980, 657 - 26
Claugue MJ.Butler A. J. Am. Chem. Soc. 1995, 117: 3475
References
Khan, A. T.; Schmidt, R. R. unpublished results.
23A Typical Procedure: To a suspension of V2O5 (0.018 g, 0.1 mmol) in water (0.5 mL) is added 30% H2O2 solution (0.6 mL, 5 mmol) at ice-bath temperature and stirring is continued. After 25 min, the solution changes into a clear brown-red in colour and ammonium bromide (0.098 g, 1 mmol) is added into it. The substrate ethyl-2,3,4,6-tetra-O-acetyl-1-thio-β-d-gluco-pyranoside (0.392 g, 1 mmol) is added after 10 min by dissolving in CH2Cl2 (5 mL) and stirring is continued further. After 30 min of stirring, H2O2 (0.6 mL, 5 mmol) is added again and the reaction is completed with additional stirring of 3.5 h as monitored by TLC. The reaction mixture is then extracted with CH2Cl2 (2 × 15 mL), washed with water (1 × 15 mL). The organic layer is dried over anhyd Na2SO4 and concentrated in vacuo. Evaporation of the solvent gives the crude residue, which is purified by column chromatography on silica gel (eluent: hexane/EtOAc, 9:1). The product is obtained as colourless liquid 0.289 g (83%).
24Spectroscopic Data for Compound 1b: White solid, mp: 73-74 °C, lit. mp: 74-75 °C; [α]D -8.5 (c 1, CHCl3), lit.: [α]D -9.0. 1H NMR (400 MHz, CDCl3): δ = 5.43 (d, 1 H, J = 2.87 Hz), 5.28 (m, 1 H), 5.05 (dd, 1 H, J = 3.27 and J = 9.94 Hz), 4.49 (d, 1 H, J = 9.9 Hz, H-1), 4.14 (m, 2 H), 3.94 (m, 1 H), 2.73 (m, 2 H, SCH2CH3), 2.16 (s, 3 H, OAc), 2.07 (s, 3 H, OAc), 2.05 (s, 3 H, OAc), 1.99 (s, 3 H, OAc), 1.29 (t, 3 H, J = 7.4 Hz, SCH2CH3); 13C NMR (100 MHz, CDCl3): δ = 170.43, 170.26, 170.11, 169.61, 84.10, 74.41, 71.95, 67.30, 67.23, 61.50, 24.40, 20.84, 20.69 (2 C), 20.62, 14.88. Anal. Calcd for C16H24O9S: C, 48.97; H, 6.16. Found: C, 48.42; H, 5.97. Spectroscopic Data for Compound 2b: mp:144-145 °C, lit. mp: 143-146 °C; [α]D = +105.5 (c 1, CHCl3), lit.: [α]D = +135-69. 1H NMR (400 MHz, CDCl3): δ = 6.30 (d, 1 H, J = 3.64 Hz), 5.45 (d, 1 H, J = 2.2 Hz), 5.18 (dd, 1 H, J = 3.40 and J = 10.72 Hz), 4.28 (m, 1 H), 4.16 (m, 1 H), 4.13-4.04 (m, 3 H), 2.19 (s, 3 H, OAc), 2.15 (s, 3 H, OAc), 2.07 (s, 3 H, OAc), 2.04 (s, 3 H, OAc). 13C NMR (100 MHz, CDCl3): δ = 170.77, 170.39, 170.04, 169.39, 91.90, 70.36, 68.67, 67.50, 66.03, 61.25, 20.94, 20.74, 20.62, 20.56. Anal. Calcd for C14H20O10: C, 48.28; H, 5.78. Found: C, 48.07; H, 5.62.