Subscribe to RSS
DOI: 10.1055/s-2002-20050
© Georg Thieme Verlag Stuttgart · New York
Antioxidant Effects of 1,5-Anhydro-D-fructose, a New Natural Sugar, in vitro
Publication History
December 28, 2000
May 24, 2001
Publication Date:
31 January 2002 (online)

Abstract
The antioxidant effects of 1,5-anhydro-D-fructose (1,5-AF), a unique anhydrohexulose, were studied in 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution, in human cells along with lipid peroxidation of low-density lipoprotein (LDL). We have confirmed that 1,5-AF scavenges DPPH radicals directly in solution and inhibits the formation of hydrogen peroxide and superoxide anion, typical reactive oxygen species (ROS), induced by phorbol myristate acetate (PMA) in a dose-dependent manner in THP-1 cells. We also observed the dose-dependent antioxidant effects of 1,5-AF on copper-mediated LDL oxidation. These findings suggest that 1,5-AF might play a role in reducing the risk of atherosclerosis and may help prevent coronary heart disease.
Key words
1,5-Anhydro-D-fructose - reactive oxygen species - low-density lipoprotein peroxidation - antioxidant
References
- 1 Halliwell B, Gutteridge J MC. Role of free radicals and catalytic metal ions in human disease. Methods in Enzymology. 1990; 186 1-85
- 2 Jacob R A, Burri B J. Oxidative damage and defense. The American Journal of Clinical Nutrition. 1996; 63 985S-90S
- 3 Witztum J L, Steinberg D. Role of oxidized low-density lipoprotein in atherogenesis. The Journal of Clinical Investigation. 1991; 88 (6) 1785-92
- 4 Yu S, Kenne L, Pederson M. Alpha-1,4-glucan lyase, a new class of starch/glycogen degrading enzyme. I. Efficient purification and characterization from red seaweeds. Biochimica et Biophysica Acta. 1993; 1156 313-20
- 5 Kametani S, Mizuno H, Shiga Y, Akanuma H. NMR of all-carbon-13 sugars : an application in development of an analytical method for a novel natural sugar, 1,5-anhydrofructose. Journal of Biochemistry. 1996; 119 180-5
- 6 Baute M A, Baute R, Deffieux G. Fungal enzymic activity degrading 1,4-α-glucans to 1,5-D-anhydrofructose. Phytochemistry. 1988; 27 3401-3
- 7 Yamanouchi T, Minoda S, Yabuuchi M, Akanuma Y, Akanuma H, Miyashita H, Akaoka I. Plasma 1,5-anhydro-D-glucitol as new clinical marker of glycemic control in NIDDM patients. Diabetes. 1989; 38 723-9
- 8 Kametani S, Shiga Y, Akanuma H. Hepatic production of 1,5-anhydrofructose and 1,5-anhydroglucitol in rat by the third glycogenolytic pathway. European Journal of Biochemistry. 1996; 242 832-8
- 9 Marsden S B. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181 1199-200
- 10 Yoshinaga K, Fujisue M, Abe J, Hanashiro I, Takeda Y, Muroya K, Hizukuri S. Characterization of exo-(1,4)-alpha glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme. Biochimica et Biophysica Acta. 1999; 1472 (3) 447-54
- 11 Kogure K, Goto S, Abe K, Ohiwa C, Akasu M, Terada H. Potent antiperoxidation activity of the bisbenzylisoquinoline alkaloid cepharanthine : the amine moiety is responsible for its pH-dependent radical scavenge activity. Biochimica et Biophysica Acta. 1999; 1426 133-42
- 12 Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods. 1981; 46 211-26
- 13 Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. The Journal of Biological Chemistry. 1994; 27 15 274-9
- 14 Suzuki M, Kametani S, Uchida K, Akanuma H. Production of 1,5-anhydroglucitol from 1,5-anhydrofructose in erythroleukemia cells. European Journal of Biochemistry. 1996; 240 23-9
- 15 Suzuki M, Akanuma H, Akanuma Y. Transport of 1,5-anhydro-D-glucitol across plasma membranes in rat hepatoma cells. Journal of Biochemistry. 1988; 104 956-9
- 16 Lynch S M, Frei B. Reduction of copper, but not iron, by human low-density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. The Journal of Biological Chemistry. 1995; 270 (10) 5158-63
- 17 Taguchi T, Haruna M, Okuda J. Effects of 1,5-anhydro-D-fructose on selected glucose-metabolizing enzymes. Biotechnology and Applied Biochemistry. 1993; 18 275-83
- 18 Yu S, Olsen C E, Marcussen J. Methods for the assay of 1,5-anhydro-D-fructose and α-1, 4-glucan lyase. Carbohydrate Research. 1998; 305 73-82
- 19 Ahren B, Holst J J, Yu S. 1,5-Anhydro-D-fructose increases glucose tolerance by increasing glucagon-like peptide-1 and insulin in mice. European Journal of Pharmacology. 2000; 397 219-25
Kazuyo Yamaji
Department of Laboratory and Molecular Medicine
Faculty of Medicine
Kagoshima University, 8-35-1
Sakuragaoka
Kagoshima City, 890-8520
Japan
Phone: +81-99-275-5437
Fax: +81-99-275-2629
Email: yamaji@m3.kufm.kagoshima-u.ac.jp