Synlett 2003(4): 0537-0541
DOI: 10.1055/s-2003-37522
LETTER
© Georg Thieme Verlag Stuttgart · New York

Polymethylhydrosiloxane (PMHS) as an Additive in Sonogashira Reactions

William P. Gallagher, Robert E. Maleczka Jr.*
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Fax: +1(517)3531793; e-Mail: maleczka@cem.msu.edu;
Further Information

Publication History

Received 24 January 2003
Publication Date:
26 February 2003 (online)

Abstract

Polymethylhydrosiloxane (PMHS) in combination with CsF facilitates the Sonogashira reaction of a variety of alkynes and electrophiles. These couplings appear to involve the in situ formation and reaction of an alkynylsiloxane. Such couplings can be run amine free at room temperature, reaction times are short, workup is easy, and product purification is straightforward. Thus, the advantages (and disadvantages) of running Sonogashira couplings with 1-silylalkynes are realized, without the need to preform the alkynyl silane.

    References

  • 1 Maleczka RE. Gallagher WP. Org. Lett.  2001,  3:  4173 ; and references cited
  • For reviews see:
  • 2a Sonogashira K. J. Organomet. Chem.  2002,  653:  46 
  • 2b Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  Chap. 5.
  • 2c Brandsma L. Vasilevsky SF. Verkruijsse HD. Application of Transition Metal Catalysts in Organic Synthesis   Springer-Verlag; Berlin: 1998.  Chap. 10.
  • 2d Rossi R. Carpita A. Bellina F. Org. Prep. Proced. Int.  1995,  27:  127 
  • 2e Sonogashira K. In Comprehensive Organic Synthesis   Vol. 3:  Trost BM. Pergamon; New York: 1991.  Chap. 2.4.
  • For recent advances see:
  • 3a Fukuyama T. Shinmen M. Nishitani S. Sato M. Ryu I. Org. Lett.  2002,  4:  1691 
  • 3b Mori A. Ahmed MSM. Sekiguchi A. Masui K. Koike T. Chem. Lett.  2002,  756 
  • 3c Heidenreich RG. Köhler K. Krauter JGE. Pietsch J. Synlett  2002,  1118 
  • 3d Tzschucke CC. Markert C. Glatz H. Bannwarth W. Angew. Chem. Int. Ed.  2002,  41:  4500 
  • 3e Choudary BM. Madhi S. Chowdari NS. Kantam ML. Sreedhar B. J. Am. Chem. Soc.  2002,  124:  14127 
  • 3f Liao Y. Fathi R. Reitman M. Zhang Y. Yang Z. Tetrahedron Lett.  2001,  42:  1815 
  • 3g Marshall JA. Chobanian HR. Yanik MM. Org. Lett.  2000,  3:  4107 
  • 3h Erdelyi M. Gogoll A. J. Org. Chem.  2001,  66:  4165 
  • 3i Nishihara Y. Ando J.-i. Kato T. Mori A. Hiyama T. Macromolecules  2000,  33:  2779 
  • 3j Alami M. Crousse B. Ferri F. J. Organomet. Chem.  2001,  624:  114 
  • 3k Hundertmark T. Littke AL. Buchwald SL. Fu GC. Org. Lett.  2000,  2:  1729 
  • 3l Nishihara Y. Ikegashira K. Hirabayashi K. Ando J.-i. Mori A. Hiyama T. J. Org. Chem.  2000,  65:  1780 
  • 3m Böhm VPW. Herrmann WA. Eur. J. Org. Chem.  2000,  3679 
  • 3n Nishihara Y. Ikegashira K. Mori A. Hiyama T. Chem. Lett.  1997,  1233 
  • For other examples of amine free Sonogashira-type reactions see
  • 5a Alonso DA. Nájera C. Pacheco C. Tetrahedron Lett.  2002,  43:  9365 
  • 5b Mori A. Shimada T. Kondo T. Sekiguchi A. Synlett  2001,  649 
  • 6a Lawrence NJ. Drew MD. Bushell SM. J. Chem. Soc., Perkin Trans. 1  1999,  3381 
  • 6b Lipowitz J. Bowman SA. Aldrichimica Acta  1973,  6:  1 
  • 6c Fieser M. Fieser LF. Reagents for Organic Synthesis   Vol. 4:  Wiley; New York: 1974.  p.393 
  • CuTC = Copper(I) thiophene carboxylate. CuTC can be easily made or purchased from Frontier Scientific. This compound is sufficiently stable and does not require any special handling when dry. CuCl must be kept and used under N2 to work efficiently. For other examples of CuTC in coupling reactions see:
  • 7a Savarin C. Srogl J. Liebeskind LS. Org. Lett.  2001,  3:  91 
  • 7b Liebeskind LS. Srogl J. J. Am. Chem. Soc.  2000,  122:  11260 
  • 7c Allred GD. Liebeskind LS. J. Am. Chem. Soc.  1996,  118:  2748 
  • 9a Rottländer M. Knochel P. J. Org. Chem.  1998,  63:  203 
  • 9b For a review of the preparation of alkenyl triflates see: Lyapkalo IM. Webel M. Reißig H.-U. Eur. J. Org. Chem.  2002,  1015 
  • 10 Representative Procedure for PMHS-Sonogashira Coupling of Aryl- and Vinyl Nonaflates/Triflates. Preparation of 1-(4-Phenylethynyl-phenyl)-ethanone ( 5) (Table 2, Entry 1). To 30 mL of NMP was added phenylacetylene(3) (0.11 mL, 1.0 mmol), PMHS (0.12 mL, 2 mmol), CsF (0.7595 g, 5.0 mmol), CuCl (0.0050 g, 0.05 mmol), 1,1,2,2,3,3,4,4,4-nonafluoro-butane-1-sulfonic acid 4-acetyl-phenyl ester (4) (0.6273 g, 1.5 mmol) and PdCl2(PPh3)2 (0.0350 g, 0.05 mmol). This mixture was stirred at r.t. until complete by TLC analysis (90/10 hexanes/EtOAc). Once complete (4 h), the reaction was diluted with Et2O and then washed with sat. aq NH4Cl. The phases were then separated and the combined organics were washed with H2O (2×), brine (2×), dried (MgSO4), filtered and concentrated. The resulting residue was purified by column chromatography (silica gel; hexane/EtOAc 90:10) to afford 1-(4-phenylethynyl-phenyl)-ethanone(5) (212 mg, 96%) as a light yellow solid (mp 95 °C). For spectroscopic data and a prior preparation see the following: Kabalka GW. Wang L. Pagni RM. Tetrahedron  2001,  57:  8017 
  • 14 Yang C. Nolan SP. Organometallics  2002,  21:  1020 
  • 15 Austin WB. Bilow N. Kelleghan WJ. Lau KSY. J. Org. Chem.  1981,  46:  2280 
  • 1-TMS acetylenes have been coupled with triflates or iodides under copper free conditions using a combination of catalytic Pd(0) and Ag(I) salts in the presence of K2CO3 or TBAF. See:
  • 16a Halbes U. Pale P. Tetrahedron Lett.  2002,  43:  2039 
  • 16b Halbes U. Bertus P. Pale P. Tetrahedron Lett.  2001,  42:  8641 
  • 16c Bertus P. Halbes U. Pale P. Eur. J. Org. Chem.  2001,  4391 
  • 17 Edelson BS. Stoltz BM. Corey EJ. Tetrahedron Lett.  1999,  40:  6729 
4

Mori et al. (ref. [3i] [l] ) have found that using 1-silylalkynes in place of their parent 1-alkynes allows one to perform a Sonogashira reaction under neutral conditions with catalytic amounts of Pd(0) and Cu(I). Marshall et al. (ref. [3g] ) also reported a similar procedure, utilizing stoichiometric amounts of CuCl and 2 equiv of Bu3N.

8

Couplings of 1 and 2 with 1.0 or 1.5 equiv of CuTC were lower yielding (44-68%).

11

CuCl could also be used, but the reaction yields tended to be slightly lower.

12

For the coupling of aryl or vinyl halides. The general procedure noted above (ref. [10] ) was followed except that 2 equiv of CuTC were used and the solvent was THF/NMP (1:1, 15 mL at 1.0 mmol scale).

13

Adding the alkyne, CsF, and PMHS at once caused rapid foaming that made monitoring by ReactIR™ difficult.