Abstract
Chlorodifluoromethyl groups were introduced into the 2-position
of the glycals 1 , 5 , 8 , and 11 by dithionite-mediated
addition of CF2 ClBr. The reaction proceeded stereoselectively,
i.e. the CF2 Cl-group is always found trans to
the neighbouring substituent at C-3 in the products. Because the
primarily formed glycosyl bromides hydrolyse easily, the corresponding
2-chlorodifluoromethyl-2-deoxypyranoses 3 , 6 , 9 , and 12 were isolated. Only 3,4,6-tri-O -acetyl-2-chlorodifluoromethyl-2-deoxy-d -glucopyranosyl bromide (2 )
was stable enough for chromatographic separation. The unprotected
anomeric pyranoses 3 , 6 , 9 , and 12 were
acetylated by acetic anhydride/pyridine yielding the 1-O -acetyl derivatives 4 , 7 , 10 , and 13 . These compounds are suitable glycosyl
donors, just as the anomeric phenyl thioglycosides 16 and 17 generated from 1,3,4-tri-O -acetyl-2-chlorodifluoromethyl-2-deoxy-d -arabinopyranside (7 )
and thiophenol (BF3 -catalysis). Furthermore, the reactivity
of glucosyl bromide 2 , 6-deoxy-l -glucose derivative 13 and
thioglycosides 16 , 17 was
investigated. On treatment of glucosyl bromide 2 with
pyridine, the 2-chlorodifluoromethyl substituted glycal 14 is formed as the result of HBr elimination.
Furthermore, the chlorodifluoromethyl group of compounds 14 and 16 was
converted into a methoxycarbonyl group by refluxing in methanolic
sodium methoxide (products 15 and 19 , respectively). Finally, the thioglycosides 16 and 17 were
subsequently deacetylated by CsF on alumina (yielding the dihydroxy
derivatives 18 and 20 )
and acetalized with chloral/DCC (18 forming
acetal 21 and carbonate 22 )
and acetone (20 forming acetal 23 ), respectively. X-ray analyses are given
for the 1-O -acetate 4 and
the thioglycosides 21 and 24 .
Key words
carbohydrates - glycals - difluoromethylation - radical addition reactions - eliminations
- acetals
References <A NAME="RT12302SS-1">1 </A>
Part 28: Schwäbisch, D.; Miethchen,
R. J. Fluorine Chem. 2002 ,
in press.
<A NAME="RT12302SS-2">2 </A>
Filler R.
Kobayashi Y.
Yagupolskii LM. In
Organofluorine Compounds in Medicinal Chemistry
and Biomedical Applications
Elsevier;
Amsterdam:
1993.
<A NAME="RT12302SS-3">3 </A>
Fluoroorganic
Chemistry: Synthetic Challenges and Biomedical Rewards, Tetrahedron
Symposia 58
Vol. 52:
Resnati G.
Soloshnok VA.
Tetrahedron;
Pergamon:
1996.
p.1-330
<A NAME="RT12302SS-4">4 </A>
Welch JT.
Eswarakrishnan S.
Fluorine
in Bioorganic Chemistry
Wiley;
New
York:
1991.
<A NAME="RT12302SS-5">5 </A>
Organofluorine
Compounds-Chemistry and Applications
Yamamoto H.
Springer-Verlag;
Berlin:
2000.
<A NAME="RT12302SS-6">6 </A>
Organofluorine
Compounds. Houben-Weyl, Methods of Organic Chemistry
E10a-c:
Baasner B.
Hagemann H.
Tatlow JC.
Thieme
Verlag;
Stuttgart:
1999/2000.
<A NAME="RT12302SS-7">7 </A>
Special Issue on Fluorosugars.
Carbohydrate Research
Vol. 327:
Miethchen R.
Defaye J.
Elsevier;
Amsterdam:
2000.
p.1-218
<A NAME="RT12302SS-8">8 </A>
Brace NO.
J.
Fluorine Chem.
1999,
93:
1
<A NAME="RT12302SS-9">9 </A>
Tozer MJ.
Herpin T.
Tetrahedron
1996,
52:
8619 ; and references cited therein
<A NAME="RT12302SS-10">10 </A>
Burkholder CR.
Dolbier WR.
Medebielle M.
J. Fluorine
Chem.
2001,
109:
39 ;
and references cited therein
<A NAME="RT12302SS-11">11 </A>
Chen QY.
Israel
J. Chem.
1999,
39:
172
<A NAME="RT12302SS-12">12 </A>
Ding Z.
Xia S.
Ji X.
Yang H.
Tao F.
Wang Q.
Synthesis
2002,
349
<A NAME="RT12302SS-13">13 </A>
Rico I.
Cantacuzene D.
Wakselman C.
Tetrahedron
Lett.
1981,
22:
3405
<A NAME="RT12302SS-14">14 </A>
Huang W.-Y.
J.
Fluorine Chem.
1992,
58:
1
<A NAME="RT12302SS-15">15 </A>
Huang W.-Y.
Xie Y.
Chinese J. Chem.
1991,
9:
351 ; Chem. Abstr . 1992 , 116 , 106596
<A NAME="RT12302SS-16">16 </A>
Wu FH.
Huang BN.
Lu L.
Huang W.-Y.
J. Fluorine Chem.
1996,
80:
91
<A NAME="RT12302SS-17">17 </A>
Huang W.-Y.
Wu F.-H.
Israel J. Chem.
1999,
39:
167
<A NAME="RT12302SS-18">18 </A>
Rong G.
Keese R.
Tetrahedron Lett.
1990,
31:
5615
<A NAME="RT12302SS-19">19 </A>
Plenkiewicz H.
Dmowski W.
Lipinski M.
J.
Fluorine Chem.
2001,
111:
227
<A NAME="RT12302SS-20">20 </A>
Zur C.
Miethchen R.
Eur. J. Org. Chem.
1998,
531
<A NAME="RT12302SS-21">21 </A>
Miethchen R.
Hein M.
Reinke H.
Eur.
J. Org. Chem.
1998,
919
<A NAME="RT12302SS-22">22 </A>
Platier-Royon R.
Portella C.
Carbohydr. Res.
2000,
327:
119
<A NAME="RT12302SS-23">23 </A>
Monosaccharides.
Their Chemistry and Their Roles in Natural Products
Collins P.
Ferrier R.
Wiley;
New York:
1995.
p.317-319
<A NAME="RT12302SS-24">24 </A>
Lemieux RU.
Lineback DR.
Can. J. Chem.
1965,
43:
94
<A NAME="RT12302SS-25">25 </A>
Hughes NA.
Carbohydr.
Res.
1972,
25:
242
<A NAME="RT12302SS-26">26 </A>
Zemplén G.
Gerecs A.
Hadácsy I.
Ber.
Dtsch. Chem. Ges.
1936,
69:
1827
<A NAME="RT12302SS-27">27 </A>
Ando T.
Yamawaki J.
Kawate T.
Sumi S.
Hanafusa T.
Bull.
Chem. Soc. Jpn.
1982,
55:
2504
<A NAME="RT12302SS-28">28 </A>
Treatment of thioglycoside 16 with Zemplén reagent at r.t. for
12 h gave a mixture of 18 and 19 (ratio, ca. 3:1).
<A NAME="RT12302SS-29">29 </A>
Miethchen R.
Sowa Chr.
Frank M.
Michalik M.
Reinke H.
Carbohydr.
Res.
2002,
337:
1 ;
and references cited therein
<A NAME="RT12302SS-30">30 </A>
Sowa Chr.
Miethchen R.
Reinke H.
J.
Carbohydr. Chem.
2002,
21:
293
<A NAME="RT12302SS-31">31 </A>
Zur C.
Miller AO.
Miethchen R.
J.
Fluorine Chem.
1998,
90:
67
<A NAME="RT12302SS-32">32 </A>
Crystallographic data (excluding structure
factors) for the structures in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication
nos. CCDC 198524-198526. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK, (fax +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk)
or via www.ccdc.cam.ac.uk/conts/retrieving.html.
<A NAME="RT12302SS-33">33 </A>
Sheldrick GM.
University
of Göttingen;
Göttingen:
1986.
<A NAME="RT12302SS-34">34 </A>
Cremer D.
Pople JA.
J. Am. Chem. Soc.
1975,
97:
1354
<A NAME="RT12302SS-35">35 </A>
Roth W.
Pigman W.
Methods Carbohydr. Chem.
1963,
2:
407