References
For reviews on the palladium-catalysed
Heck reaction see:
1a
Heck RF.
Palladium Reagents in
Organic Syntheses
Katritzky AR.
Meth-Cohn O.
Rees CW.
Academic Press;
London:
1985.
p.2
1b
Heck RF.
Vinyl Substitution with
Organopalladium Intermediates, in Comprehensive Organic Synthesis
Vol.
4:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
1c
de Meijere A.
Meyer F.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
1d
Malleron J.-L.
Fiaud J.-C.
Legros J.-Y.
Handbook of Palladium-Catalysed Organic Reactions
Academic
Press;
London:
1997.
1e
Reetz MT.
Transition Metal Catalysed Reactions
Davies SG.
Murahashi S.-I.
Blackwell Sci.;
Oxford:
1999.
1f
Beletskaya I.
Cheprakov A.
Chem. Rev.
2000,
100:
3009
1g
Withcombe N.
Hii Mimi KK.
Gibson S.
Tetrahedron
2001,
57:
7449
1h
Littke A.
Fu G.
Angew. Chem. Int. Ed.
2002,
41:
4176
For examples of Heck reactions with
vinyl halides:
2a
Dieck H.
Heck R.
J. Org. Chem.
1975,
40:
1083
2b
Patel B.
Heck R.
J. Org. Chem.
1978,
43:
3898
2c
Patel B.
Kao L.-C.
Cortese N.
Minkiewicz J.
Heck R.
J.
Org. Chem.
1979,
44:
918
2d
Kao L.-C.
Stakem G.
Patel B.
Heck R.
J. Org. Chem.
1982,
47:
1267
2e
Fischetti W.
Mak T.
Stakem G.
Kim J.-I.
Rheingold A.
Heck R.
J. Org. Chem.
1983,
48:
948
2f
Mitsudo T.-A.
Fischetti W.
Heck R.
J.
Org. Chem.
1984,
49:
1640
2g
Jeffery T.
Tetrahedron
Lett.
1985,
26:
2667
2h
Larock R.
Gong W.
J. Org. Chem.
1989,
544:
2047
2i
Jeffery T.
J.
Chem. Soc., Chem. Commun.
1991,
324
2j
Lu X.
Huang X.
Ma S.
Tetrahedron
Lett.
1992,
33:
2535
2k
Jeffery T.
Tetrahedron
Lett.
1993,
34:
1133
2l
Zhang X.-P.
Schlosser M.
Tetrahedron Lett.
1993,
34:
1925
2m
Crisp G.
Glink P.
Tetrahedron
1994,
50:
2623
2n
Voigt K.
von Zezschwitz P.
Rosauer K.
Lansky A.
Adams A.
Reiser O.
de Meijere A.
Eur.
J. Org. Chem.
1998,
1521
For recent examples of Heck reactions
catalysed by palladacycles, see:
3a
Herrmann WA.
Brossmer C.
Öfele K.
Reisinger C.
Riermeier T.
Beller M.
Fisher H.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1844
3b
Herrmann WA.
Brossmer C.
Reisinger C.
Riermeier T.
Öfele K.
Beller M.
Chem. Eur.
J.
1997,
3:
1357
3c
Ohff M.
Ohff A.
Boom M.
Milstein D.
J. Am. Chem. Soc.
1997,
119:
11687
3d
Albisson D.
Bedford R.
Scully PN.
Tetrahedron
Lett.
1998,
39:
9793
3e
Ohff M.
Ohff A.
Milstein D.
Chem.
Commun.
1999,
357
3f
Miyazaki F.
Yamaguchi K.
Shibasaki M.
Tetrahedron
Lett.
1999,
40:
7379
3g
Bergbreiter D.
Osburn P.
Liu Y.-S.
J.
Am. Chem. Soc.
1999,
121:
9531
3h
Gai X.
Grigg R.
Ramzan I.
Sridharan V.
Collard S.
Muir J.
Chem.
Commun.
2000,
2053
3i
Gibson S.
Foster D.
Eastham D.
Tooze R.
Cole-Hamilton D.
Chem. Commun.
2001,
779
3j
Iyer S.
Jayanthi A.
Tetrahedron Lett.
2001,
42:
7877
4a
Gruber A.
Zim D.
Ebeling G.
Monteiro A.
Dupont J.
Org. Lett.
2000,
2:
1287
4b
Littke A.
Fu G.
J. Am. Chem. Soc.
2001,
123:
6989
5 For a review on the synthesis of
polypodal diphenyl-phosphine ligands, see: Laurenti D.
Santelli M.
Org. Prep. Proc. Int.
1999,
31:
245
6
Laurenti D.
Feuerstein M.
Pèpe G.
Doucet H.
Santelli M.
J.
Org. Chem.
2001,
66:
1633
7a
Feuerstein M.
Laurenti D.
Bougeant C.
Doucet H.
Santelli M.
Chem. Commun.
2001,
325
7b
Feuerstein M.
Laurenti D.
Doucet H.
Santelli M.
Synthesis
2001,
2320
8a
Feuerstein M.
Doucet H.
Santelli M.
J. Org. Chem.
2001,
66:
5923
8b
Feuerstein M.
Doucet H.
Santelli M.
Synlett
2001,
1980
8c
Feuerstein M.
Doucet H.
Santelli M.
Tetrahedron
Lett.
2002,
43:
2191
8d
Berthiol F.
Feuerstein M.
Doucet H.
Santelli M.
Tetrahedron Lett.
2002,
43:
5625
8e
Berthiol F.
Doucet H.
Santelli M.
Tetrahedron
Lett.
2003,
44:
1221
9 As a typical experiment, the reaction
of β-bromostyrene (1.83 g, 10 mmol), n-butyl
acrylate (2.56 g, 20 mmol) and K2CO3 (2.8
g, 20 mmol) at 130 °C during 20 h in anhydrous DMF (10
mL) in the presence of cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)
cyclopentane/[PdCl(C3H5)]2 complex
(0.0001 mmol) under argon affords the corresponding adduct after
extraction with dichloro-methane, evaporation and filtration on
silica gel (pentane/diethyl ether: 1/1) in 66% (1.52
g) isolated yield. n-Butyl (E,E)-5-phenylpenta-2,4-dienoate, 1H
NMR (300 MHz, CDCl3): δ = 7.45 (d, J = 7.4 Hz, 2 H, Ph), 7.45-7.25
(m, 4 H, Ph and =CH), 6.89 (m, 2 H, =CH), 5.98
(d, J = 15.3 Hz, 1 H, =CH),
4.15 (t, J = 6.6 Hz, 2 H, CH2),
1.65 (m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94
(t, J = 7.4 Hz, 1 H, Me).
10
1H NMR (300 MHz,
CDCl3) of selected products: Entry 17: δ = 7.50-7.15
(m, 5 H, Ph), 6.75 (dd, J = 10.9,
15.7 Hz, 1 H, =CH), 6.43 (d, J = 15.7
Hz, 1 H, =CH), 6.19 (dd, J = 10.9, 15.1
Hz, 1 H, =CH), 5.82 (dt, J = 15.1,
7.0 Hz, 1 H, =CH), 1.50-1.15 (m, 12 H, 6 CH2),
1.15 (m, 2 H, CH2), 0.88 (t, J = 6.8
Hz, 3 H, CH3); Entry 24: δ = 7.40 (d, J = 7.7 Hz, 2 H, Ph), 7.29 (t, J = 7.2 Hz, 2 H, Ph), 7.17 (t, J = 7.2 Hz, 1 H, Ph), 6.74 (d, J = 16.2 Hz, 1 H, =CH),
6.47 (d, J = 16.2 Hz, 1 H, =CH),
5.86 (t, J = 8.3 Hz, 1 H, =CH),
2.51 (m, 2 H, CH2), 2.25 (m, 2 H, CH2), 1.70-1.40
(m, 8 H, 4 CH2); Entry 26:
δ = 7.32
(d, J = 15.9 Hz, 1 H, =CH)
5.93 (d, J = 15.9 Hz, 1 H, =CH),
5.36 (s, 1 H, =CH2), 5.33 (s, 1 H, =CH2),
4.15 (t,
J = 6.8 Hz,
2 H, CH2), 2.24 (q, J = 7.3
Hz, 2 H, CH2), 1.42 (m, 2 H, CH2), 1.65 (m,
2 H, CH2), 1.11 (t, J = 7.3
Hz, 3 H, CH3), 0.94 (t, J = 7.3
Hz, 3 H, CH3); Entry 29: δ = 7.34 (d,
J = 8.7 Hz, 2 H, Ar),
6.86 (d, J = 8.7 Hz, 2 H, Ar),
6.70 (d, J = 16.2 Hz, 1 H, =CH),
6.53 (d, J = 16.2 Hz, 1 H, =CH),
5.07 (s, 1 H, =CH2), 5.01 (s, 1 H, =CH2),
3.80 (s, 3 H, OMe), 2.34 (q, J = 7.3
Hz, 2 H, CH2), 1.15 (t, J = 7.3
Hz, 3 H, CH3); Entry 30: δ = 7.58 (d, J = 8.5 Hz, 2 H, Ar), 7.48 (d, J = 8.5 Hz, 2 H, Ar), 6.90 (d, J = 16.4 Hz, 1 H, =CH),
6.55 (d, J = 16.4 Hz, 1 H, =CH),
5.22 (s, 1 H, =CH2), 5.19 (s, 1 H, =CH2), 2.36
(q, J = 7.3 Hz, 2 H, CH2),
1.16 (t, J = 7.3 Hz, 3 H, CH3); Entry
32: δ = 8.52 (m, 2 H, Ar), 7.26 (m, 2 H, Ar),
6.99 (d,
J = 16.4
Hz, 1 H, =CH), 6.47 (d, J = 16.4
Hz, 1 H, =CH), 5.23 (s, 1 H, =CH2),
5.20 (s, 1 H, =CH2), 2.34 (q, J = 7.3
Hz, 2 H, CH2), 1.16 (t, J = 7.3
Hz, 3 H, CH3); Entry 33: δ = 7.54 (dd, J = 11.7, 15.2 Hz, 1 H, =CH),
5.97 (d, J = 11.7 Hz, 1 H, =CH),
5.75 (d, J = 15.2 Hz, 1 H, =CH),
4.15 (t, J = 6.8 Hz, 2 H, CH2),
1.88 (s, 3 H, CH3), 1.86 (s, 3 H, CH3), 1.65
(m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94 (t, J = 7.3 Hz, 3 H, CH3); Entry
37: δ = 8.51 (m, 2 H, Ar), 7.15 (m, 2 H, Ar),
7.17 (dd, J = 11.0 Hz, 15.5
Hz, 1 H, =CH), 6.32 (d, J = 15.5
Hz, 1 H, =CH), 6.02 (d, J = 11.0
Hz, 1 H, =CH), 1.88 (s, 3 H, CH3), 1.87 (s,
3 H, CH3); Entry 38: δ = 7.86 (d, J = 15.5 Hz, 1 H, =CH),
5.77 (d, J = 15.5 Hz, 1 H, =CH),
4.15 (q, J = 6.8 Hz, 2 H, CH2),
1.95 (s, 3 H, CH3), 1.86 (s, 3 H, CH3), 1.78
(s, 3 H, CH3), 1.65 (m, 2 H, CH2), 1.40 (m,
2 H, CH2), 0.94 (t,
J = 7.3
Hz, 3 H, CH3); Entry 41: δ = 8.51 (m,
2 H, Ar), 7.48 (d, J = 15.9
Hz, 1 H, =CH), 7.25 (m, 2 H, Ar), 6.35 (d, J = 15.9 Hz, 1 H, = CH),
1.96 (s, 3 H, CH3), 1.88 (s, 6 H, 2 CH3); Entry
42: δ = 7.41 (d, J = 7.4
Hz, 2 H, Ph); 7.31 (t, J = 7.4 Hz,
2 H, Ph), 7.23 (t, J = 7.4 Hz,
1 H, Ph), 6.81 (d, J = 16.2 Hz,
1 H, =CH), 6.60 (d, J = 16.2
Hz, 1 H, =CH), 5.26 (s, 1 H, =CH2),
5.14 (s, 1 H, =CH2), 3.82 (t, J = 6.5
Hz, 2 H, CH2), 2.64 (t, J = 6.5
Hz, 2 H, CH2).