Synthesis 2003(12): 1790-1796
DOI: 10.1055/s-2003-41028
PAPER
© Georg ThiemeVerlag Stuttgart · New York

Synthesis of Allylamines fromAlkynes and Iminium Ions

Susanne Rehn, Armin R. Ofial, Herbert Mayr*
Department Chemie der Ludwig-Maximilians-UniversitätMünchen, Butenandtstr. 5-13 (Haus F), 81377München, Germany
Fax: +49(89)218077717; e-Mail: Herbert.Mayr@cup.uni-muenchen.de;
Further Information

Publication History

Received 10 June 2003
Publication Date:
13 August 2003 (online)

Abstract

The iminium salt Bn2N+=CH2 SnCl5 - undergoesene reactions with inverse electron demand with alkynes and withthe triple bond of enynes to give benzylideneammonium ions in aprotic solvents.Their hydrolysis yields N-benzylallylaminesin good yields. Mannich reaction products, which are the main productsunder more nucleophilic reaction conditions, have not been detected.

    References

  • 2 For a review on allylic amination,see: Johannsen M. Jørgensen KA. Chem. Rev.  1998,  98:  1689 
  • For reviews on imino ene reactions:
  • 3a Borzilleri RM. Weinreb SM. Synthesis  1995,  347 
  • 3b Laschat S. Liebigs Ann.  1997,  1 
  • 4a Cai J. Davies AG. J.Chem. Soc., Perkin Trans. 2  1992,  1743 
  • 4b Davies AG. Kinart WJ. J.Chem. Soc., Perkin Trans. 2  1993,  2281 
  • 4c Kinart W. J.Chem. Res., Synop.  1994,  486 
  • 4d Brimble MA. Heathcock CH. Nobin GN. Tetrahedron: Asymmetry  1996,  7:  2007 
  • 4e Vassilikogiannakis G. Stratakis M. Orfanopoulos M. Foote CS. J.Org. Chem.  1999,  64:  4130 
  • 4f Adam W. Bottke N. Krebs O. Lykakis I. Orfanopoulos M. Stratakis M. J. Am. Chem. Soc.  2002,  124:  14403 
  • 5a Leblanc Y. Zamboni R. Bernstein MA. J. Org. Chem.  1991,  56:  1971 
  • 5b Brimble MA. Heathcock CH. J.Org. Chem.  1993,  58:  5261 
  • 5c Gau A.-H. Lin G.-L. Uang B.-J. Liao F.-L. Wang S.-L. J.Org. Chem.  1999,  64:  2194 
  • 5d Adam W. Pastor A. Wirth T. Org.Lett.  2000,  2:  1295 
  • 6 Ofial AR. Mayr H. J. Org. Chem.  1996,  61:  5823 
  • 7 Ofial AR. Mayr H. Angew. Chem., Int. Ed. Engl.  1997,  36:  143 ; Angew. Chem. 1997, 109, 145
  • 8 For a Ni-catalyzed three-componentsynthesis of allylamines from alkynes, imines, and organoboron reagents,see: Patel SJ. Jamison TF. Angew. Chem. Int. Ed.  2003,  42:  1364 ; Angew. Chem. 2003, 115, 1402
  • 9 For a Ti-promoted asymmetric synthesisof allylamines from arylimines and alkynes, see: Fukuhara K. Okamoto S. Sato F. Org.Lett.  2003,  5:  2145 
  • 10 For a synthesis of allylamines fromiminium ions and vinylsilanes, see: Yahiro S. Shibata K. Saito T. Okauchi T. Minami T. J.Org. Chem.  2003,  68:  4947 
  • 11a Stewart TD. Bradley WE. J. Am. Chem. Soc.  1932,  54:  4172 
  • 11b Knoll F. Krumm U. Chem. Ber.  1971,  104:  31 
  • 11c Rochin C. Babot O. Dunoguès J. Duboudin F. Synthesis  1986,  228 
  • 12 Enders D. Ward D. Adam J. Raabe G. Angew. Chem., Int. Ed. Engl.  1996,  35:  981 ; Angew. Chem. 1996, 108, 1059
  • 14 Mayr H. Ofial AR. Würthwein E.-U. Aust NC. J.Am. Chem. Soc.  1997,  119:  12727 
  • The nature of the SnCl5 - counterionsin solution has not been established. X-ray and vibrational spectraof other ‘pentachlorostannates’ have shown thatSnCl5 - may exist, but evidence forthe presence of Sn2Cl10 2- hasalso been reported:
  • 15a For X-ray analyses, see: Bryan RF. J. Am. Chem. Soc.  1964,  86:  733 
  • Shamir J. Luski S. Bino A. Cohen S. Gibson D. Inorg. Chem.  1985,  24:  2301 
  • 15b For an analysis of vibrationalspectra, see: Creighton JA. Green JHS. J. Chem. Soc. A  1968,  808 
  • 15c For a report on Sn2Cl10 2-,see: Baaz M. Gutmann V. Kunze O. Monatsh. Chem.  1962,  93:  1142 
  • 15d The observed 119Sn NMRchemical shift of δ = -673ppm for the iminium salt 2 indicates, however,that the presence of SnCl6 2- (δ = -733 ppm)can be ruled out: Wrackmeyer B. Ann.Rep. NMR Spectroscopy  1986,  16:  73 
  • 16 Mannich C. Chang FT. Ber. Dtsch. Chem. Ges.  1933,  66:  418 
  • For the formation of allenylaminesfrom iminium ions and propargylsilanes, see:
  • 17a Damour D. Pornet J. Randrianoelina B. Miginiac L. J. Organomet. Chem.  1990,  396:  289 
  • 17b Agami C. Bihan D. Hamon L. Kadouri-Puchot C. Lusinchi M. Eur. J.Org. Chem.  1998,  2461 
  • 17c Tietze LF. Wünsch JR. Noltemeyer M. Tetrahedron  1992,  48:  2081 
  • 18a List B. Tetrahedron  2002,  58:  5573 
  • 18b Arend M. Westermann B. Risch N. Angew.Chem. Int. Ed.  1998,  37:  1044 ; Angew. Chem. 1998, 110, 1096
  • 18c Kleinmann EF. In Comprehensive OrganicSynthesis   Vol. 2:  Trost BM. Fleming I. Heathcock CH. Pergamon; Oxford: 1991.  p.893 
  • 18d Heaney H. In Comprehensive Organic Synthesis   Vol.2:  Trost BM. Fleming I. Heathcock CH. Pergamon; Oxford: 1991.  p.953-973  
  • 18e Tramontini M. Angiolini L. Tetrahedron  1990,  46:  1791 
  • 19 Rehn S. Ph. D. Dissertation   Ludwig-Maximilians-UniversitätMünchen; Germany: 2001. 
  • 20a Lambert JB. Tetrahedron  1990,  46:  2677 
  • 20b Gabelica V. Kresge AJ. J. Am. Chem. Soc.  1996,  118:  3838 
  • 21 Mayr H. Kuhn O. Schlierf C. Ofial AR. Tetrahedron  2000,  56:  4219 
  • 22 Pock R. Mayr H. Chem. Ber.  1986,  119:  2497 
  • 23a Neunhoeffer H. Franke WK. In Houben-Weyl, Offenkettige und CyclischePolyene En-ine   4th ed., Vol. V/1d:  Müller E. Georg Thieme; Stuttgart: 1972.  p.609-696  
  • 23b Carothers WH. Coffman DD. J.Am. Chem. Soc.  1932,  54:  4071 
  • 23c Hamlet JC. Henbest HB. Jones ERH. J. Chem. Soc.  1951,  2652 
  • 24 Pawlenko S. In Houben-Weyl, Organo-Silicium Verbindungen   4thed., Vol. XIII/5:  Bayer O. Müller E. Georg Thieme; Stuttgart: 1980.  p.45-50  
  • 25a Jackson WR. Perlmutter P. Smallridge AJ. Aust. J. Chem.  1988,  41:  251 
  • 25b Gilly C. Taillander G. Péra MH. Luu-Duc C. Demenge P. de Catanho MT. Eur.J. Med. Chem.  1997,  32:  365 
  • 25c Heilmann R. Glenat R. de Gaudemaris G. Bull.Soc. Chim. Fr.  1952,  284 
  • 26a Jun C.-H. Crabtree RH. J.Organomet. Chem.  1993,  447:  177 
  • 26b Labaudinière L. Hanaizi J. Normant J.-F. J. Org. Chem.  1992,  57:  6903 
  • 27 Ogoshi S. Nishiguchi S. Tsutsumi K. Kurosawa H. J. Org. Chem.  1995,  60:  4650 
1

New address: S. Rehn, Dr. Th. BöhmeKG Chemische Fabrik GmbH & Co., D-82538 Geretsried, Germany.

13

For the spectroscopic characterization,the precipitated iminium salt 2 was filteredoff, washed with a 1:1 mixture of Et2O and CH2Cl2,and dried in vacuo (yield: 93%). 1HNMR (CD3CN, 300 MHz): δ = 5.02(s, 4 H, PhCH 2), 7.34-7.40 (m,4 H, C6H5), 7.45-7.54 (m, 6 H, C6H5),7.95 (t, J HN = 1 Hz,2 H, N+=CH2). 13CNMR (CD3CN, 75.5 MHz): δ = 63.69(t, PhCH2), 130.31, 130.47,131.10 (3 d, C6H5), 131.17 (s, C6H5),169.71 (t, J CN = 11.2Hz, N+=CH2). 119Sn NMR(CD3CN, 100.7 MHz): δ = -673(m).

28

Reactions at temperatures above theboiling points of volatile enophiles were carried out in a pressuretube that was equipped with a magnetic stir bar, sealed with a screw capand heated in an aluminum block on the heating platform of a magneticstirrer.