References
<A NAME="RD23003ST-1">1</A>
Tanaka T.
Toda F.
Chem. Rev.
2000,
100:
1025
<A NAME="RD23003ST-2A">2a</A>
Weber L.
Illegen K.
Almstetter M.
Synlett
1999,
366
<A NAME="RD23003ST-2B">2b</A>
Armstrong RW.
Combs AP.
Tempest PA.
Brown SD.
Keating TA.
Acc. Chem. Rev.
1996,
29:
123
<A NAME="RD23003ST-3">3</A>
Strecker A.
Liebigs. Ann. Chem.
1850,
75:
27
<A NAME="RD23003ST-4">4</A>
Robinson R.
J. Chem. Soc.
1917,
111:
876
<A NAME="RD23003ST-5">5</A>
Hantzsch A.
Justus. Liebig. Ann. Chem.
1882,
215:
1
<A NAME="RD23003ST-6A">6a</A>
Dossin R.
Marcos CF.
Marcaccini S.
Pepino R.
Tetrahedron Lett.
1997,
38:
2519
<A NAME="RD23003ST-6B">6b</A>
Kobayashi K.
Matoba T.
Susuima I.
Takabi M.
Morikawa O.
Konishi H.
Chem. Lett.
1998,
551 ; and references cited therein
<A NAME="RD23003ST-7A">7a</A>
Yamada T.
Omote Y.
Yammaka Y.
Miyazawa T.
Kuwata S.
Synthesis
1998,
991
<A NAME="RD23003ST-7B">7b</A>
Ross GF.
Handtweek E.
Ugi I.
Tetrahedron
2002,
58:
6127 ; and references cited therein
<A NAME="RD23003ST-8">8</A>
Arend M.
Westermann B.
Risch N.
Angew. Chem. Int. Ed.
1998,
37:
1045
<A NAME="RD23003ST-9A">9a</A>
Shestopalov AM.
Emeliyanova YM.
Shestiopolov AA.
Rodinovskaya LA.
Niazimbetova ZI.
Evans DH.
Org. Lett.
2002,
423
<A NAME="RD23003ST-9B">9b</A>
List B.
Castello C.
Synlett
2001,
1687
<A NAME="RD23003ST-9C">9c</A>
Nair V.
Vinod AU.
Rajesh C.
J. Org. Chem.
2001,
66:
4427
<A NAME="RD23003ST-9D">9d</A>
Bagley MC.
Cale JW.
Bower J.
Chem. Commun.
2002,
1682
<A NAME="RD23003ST-9E">9e</A>
Cheng JF.
Chen M.
Arthenius T.
Nadzen A.
Tetrahedron Lett.
2002,
43:
6293
<A NAME="RD23003ST-9F">9f</A>
Huma HZS.
Halder R.
Kalra SS.
Das J.
Iqbal J.
Tetrahedron Lett.
2002,
43:
6485
<A NAME="RD23003ST-9G">9g</A>
Bertozzi F.
Gustafsson M.
Olsson R.
Org. Lett.
2002,
4:
3147
<A NAME="RD23003ST-9H">9h</A>
Yuan Y.
Li X.
Ding K.
Org. Lett.
2002,
4:
3309
<A NAME="RD23003ST-9I">9i</A>
Bora U.
Saikia A.
Boruah RC.
Org. Lett.
2003,
5:
435
<A NAME="RD23003ST-9J">9j</A>
Dallinger D.
Gorobets NY.
Kappe CO.
Org. Lett.
2003,
5:
1205
<A NAME="RD23003ST-10A">10a</A>
Pourashraf M.
Delair P.
Rasmaissen MO.
Greene AE.
J. Org. Chem.
2000,
65:
6966
<A NAME="RD23003ST-10B">10b</A>
Cossy J.
Willis C.
Bellosta V.
Jalmes LS.
Synthesis
2002,
951
<A NAME="RD23003ST-11A">11a</A>
Gavrilov MY.
Novoseleva GN.
Vakhrin MI.
Konshin ME.
Khim.-Farm. Zh.
1996,
30:
39
<A NAME="RD23003ST-11B">11b</A>
Ghorab MM.
Hassan AY.
Phosphorus, Sulfur Silicon Relat. Elem.
1998,
141:
257
<A NAME="RD23003ST-12A">12a</A>
Anderson GL.
Shim JL.
Broom AD.
J. Org. Chem.
1976,
41:
1095
<A NAME="RD23003ST-12B">12b</A>
Grivaky EM.
Lee S.
Siyal CW.
Duch DS.
Nichol CA.
J. Med. Chem.
1980,
23:
327
<A NAME="RD23003ST-13A">13a</A>
Furuya S, and
Ohtaki T. inventors; Eur. Pat. Appl., EP. 608565.
; Chem. Abstr., 1994, 121, 205395
<A NAME="RD23003ST-13B">13b</A>
Heber D.
Heers C.
Ravens U.
Pharmazie
1993,
48:
537
<A NAME="RD23003ST-14">14</A>
Sakuma Y,
Hasegawa M,
Kataoka K,
Hoshina K,
Yamazaki N,
Kadota T, and
Yamaguchi H. inventors; PCT Int. Appl., WO 9105785.
; Chem. Abstr., 1991,
115, 71646
<A NAME="RD23003ST-15">15</A>
Bennett LR.
Blankely CJ.
Fleming RW.
Smith RD.
Tessonam DK.
J. Med. Chem.
1981,
24:
382
<A NAME="RD23003ST-16">16</A>
Davoll J.
Clarke J.
Eislager EF.
J. Med. Chem.
1972,
15:
837
<A NAME="RD23003ST-17A">17a</A>
Kretzschmer E.
Pharmazie
1980,
35:
253
<A NAME="RD23003ST-17B">17b</A>
Shigo S.
Hiroshi I.
Yakugaku Zasshi
1969,
89:
266
<A NAME="RD23003ST-18">18</A>
Ahluwalia VK.
Batla R.
Khurana A.
Kumar R.
Indian J. Chem., Sect. B
1990,
29:
1141
<A NAME="RD23003ST-19A">19a</A>
Cheng T.
Wang Y.
Cai M.
Youji. Huaxue.
1988,
8:
250
<A NAME="RD23003ST-19B">19b</A>
Spada MR.
Klein RS.
Otter BA.
J. Heterocycl. Chem.
1989,
26:
1851
<A NAME="RD23003ST-19C">19c</A>
Ahluwalia VK.
Kumar R.
Khurana K.
Bhatla R.
Tetrahedron
1990,
46:
3963
<A NAME="RD23003ST-19D">19d</A>
Ahluwalia VK.
Bhatla R.
Khurana A.
Kumar R.
Indian J. Chem., Sect B
1990,
29:
1141
<A NAME="RD23003ST-19E">19e</A>
Ahluwalia VK.
Sharma HR.
Tyagi R.
Tetrahedron
1986,
42:
4045
<A NAME="RD23003ST-19F">19f</A>
Ahluwalia VK.
Aggarwal R.
Alauddin M.
Gill G.
Khanduri CH.
Heterocycle
1990,
31:
129
<A NAME="RD23003ST-19G">19g</A>
Broom AD.
Shim JL.
Anderson CL.
J. Org. Chem.
1976,
411:
1095
<A NAME="RD23003ST-19H">19h</A>
Wamhoff H.
Muhr J.
Synthesis
1988,
919
<A NAME="RD23003ST-19I">19i</A>
Hirota K.
Kuki H.
Maki Y.
Heterocycles
1994,
37:
563
<A NAME="RD23003ST-19J">19j</A>
Srivastava P.
Saxena AS.
Ram VJ.
Synthesis
2000,
541
<A NAME="RD23003ST-20A">20a</A>
Bhuyan PJ.
Lekhok KC.
Sandhu JS.
Tetrahedron Lett.
1999,
40:
1793
<A NAME="RD23003ST-20B">20b</A>
Bhuyan PJ.
Borah HN.
Lekhok KC.
Sandhu JS.
J. Heterocycl. Chem.
2001,
38:
491
<A NAME="RD23003ST-20C">20c</A>
Bhuyan PJ.
Borah HN.
Sandhu JS.
Tetrahedron Lett.
2002,
43:
895
<A NAME="RD23003ST-21">21</A>
In a typical experimental procedure equimolar amounts of 1a (0.312 g, 2 mmol), triethylorthoformate 2 (0.296 g, 2 mmol), malononitrile 3a (0.132 g, 2 mmol) and acetic anhydride (0.648 g, 6 mmol) were added to the reaction
vessel of the microwave reactor (Synthewave 402 Monomode Reactor from Prolabo) and
allowed to react under microwave irradiation at 360 W and 75 °C for 5 min. The mixture
was cooled to r.t. and the solid compound obtained was recrystallised from EtOH (0.392
g, 85%). The compound was confirmed as 4a from the spectroscopic data and elemental analysis. Mp 215 °C.
1H NMR (300 MHz, CDCl3): δ = 3.00 (s, 3 H), 3.15 (s, 3 H), 8.10 (s, 1 H), 8.85 (s, 1 H). 13C NMR (300 MHz, CDCl3): δ = 28.3 (3-Me), 36.6 (1-Me), 106.4 (C-4a), 118.8 (CN), 142.6 (C-7), 145.02 (C-6),
147.75 (C-5), 151.2 (C-2), 154.12 (C-8a), 158.0 (C-4). IR: 2217, 1695, 1650 cm-1. MS: 232 [M+]. Anal. Calcd for C10H8N4O3: C, 51.72; H, 3.44; N, 24.13. Found: C, 51.75; H, 3.40; N, 24.15. Similarly compounds
4b-d, were synthesised (Table
[1]
) and characterised.
<A NAME="RD23003ST-22">22</A>
In a simple experimental procedure equimolar amounts of 5a (0.340 g, 2 mmol), triethylorthoformate 2 (0.296 g, 2 mmol), malononitrile 3a (0.132 g, 2 mmol) and acetic anhydride (0.648 g, 6 mmol) were allowed to react under
microwave irradiation at 360 W and 75 °C for 2 min in a monomode microwave reactor.
The mixture was cooled to r.t. and the solid compound obtained was recrystallised
from EtOH (0.438g, 95%). The compound was confirmed as 6a from the spectroscopic data and elemental analysis. Mp 350-352 °C (lit. 352-353 °C).
1H NMR (300 MHz, CDCl3): δ = 3.00 (s, 3 H), 3.15 (s, 3 H), 7.75 (br s, 2 H), 8.40 (s, 1 H). IR: 3250, 2213,
1690, 1655 cm-1
. MS: 231 [M+]. Anal. Calcd for C10H9N5O2: C, 51.94; H, 3.89; N, 30.30. Found: C, 52.00; H, 3.95; N, 30.25. Similarly compounds 6b-d were synthesised (Table
[1]
) and characterised.
<A NAME="RD23003ST-23">23</A>
Hirota K.
Kitade Y.
Senda S.
J. Heterocycl. Chem.
1985,
22:
345
<A NAME="RD23003ST-24">24</A>
In a typical experimental procedure equimolar amounts of 7a (0.342 g, 2 mmol), triethylorthoformate 2 (0.296 g, 2 mmol), malononitrile 3a (0.132 g, 2 mmol) and acetic anhydride (0.648 g, 6 mmol) were allowed to react under
microwave irradiation at 360 W and 75 °C for 8 min in a monomode microwave reactor.
The mixture was cooled to r.t. and the solid compound obtained was recrystallised
from EtOH (0.321 g, 65%). The compound was confirmed as 8a from the spectroscopic data and elemental analysis. Mp 218 °C (lit. 218 °C). 1H NMR (300 MHz, CDCl3): δ = 3.00 (s, 3 H), 3.15 (s, 3 H), 7.85 (br s, 2 H), 8.15 (s, 1 H). 1
3C NMR (300 MHz, CDCl3): δ = 28.5 (3-Me), 36.8 (1-Me), 107.25 (C-4a), 118.75 (CN), 143.5 (C-7), 145.5 (C-6),
146.55 (C-5), 151.25 (C-2), 154.25 (C-8a), 158.0 (C-4). IR: 3255, 2216, 1715, 1642,
1625 cm-1. MS: 247 [M+]. Anal. Calcd for C10H9N5O3: C, 48.58, H, 3.64, N, 28.34. Found: C, 48.50, H, 3.70, N, 28.40. Similarly compounds
8b-d were synthesised (Table
[1]
) and characterised.
<A NAME="RD23003ST-25">25</A>
Bhuyan PJ.
Borah HN.
Boruah RC.
Tetrahedron Lett.
2003,
44:
1847