RSS-Feed abonnieren
DOI: 10.1055/s-2003-44997
A Novel Access to γ-Alkylidenebutenolides: Sequential Stille Couplings of Dibromomethylenebutenolides
Publikationsverlauf
Publikationsdatum:
16. Dezember 2003 (online)

Abstract
γ-(Dibromomethylene)butenolide (2) and β-bromo-γ-(bromomethylene)butenolide (Z-5), both of which obtained from dibromolevulinic acid (6) in a single step, underwent Pd-catalyzed couplings with phenyl- or styryltributylstannane giving monobromobutenolides with excellent stereo- and regiocontrol. A second Stille coupling or the reduction with Zn dust led to bromine-free γ-alkylidenebutenolides as single stereoisomers.
Key words
catalysis - palladium - regioselective C,C coupling - stereoselective C,C coupling - unsaturated lactone
- General references:
-
1a
Tsuji J. Palladium Reagents and Catalysis: Innovations in Organic Synthesis John Wiley; Chichester: 1995. -
1b
Farina V.Krishnamurthy V.Scott WJ. Org. React. 1997, 50: 1 -
1c
Negishi E.-i.Liu F. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.1-42 -
1d
Mitchell TN. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.167-197 -
1e
Boudier A.Bromm LO.Lotz M.Knochel P. Angew. Chem. Int. Ed 2000, 39: 4414 ; Angew. Chem. 2000, 112, 4584 -
1f
Poli G.Giambastiani G.Heumann A. Tetrahedron 2000, 56: 5959 -
1g
Hill EA. In Grignard Reagents - New DevelopmentsRichey HG. John Wiley & Sons; Chichester: 2000. p.27-64 -
1h
Chemler SR.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4544 ; Angew. Chem. 2001, 113, 4676 - See for example:
-
2a 2,4-Dibromothiazole:
Bach T.Heuser S. J. Org. Chem. 2002, 67: 5789 ; and literature cited therein -
2b 2,3-Dibromofuran-5-carboxylate:
Bach T.Krüger L. Synlett 1998, 1185 ; and literature cited therein -
2c 2-Bromo-1-cyclohexenyl triflate (in contrast to 1,2-dibromocyclohexene):
Voigt K.von Zezschwitz P.Rosauer K.Lansky A.Adams O.Reiser O.de Meijere A. Eur. J. Org. Chem. 1998, 1521 -
2d and:
von Zezschwitz P.Petry F.de Meijere A. Chem.-Eur. J 2001, 7: 4035 ; and literature cited therein -
2e 1,2-Dibromobenzene:
Wegener HA.Scott LT.de Meijere A. J. Org. Chem. 2003, 68: 883 ; and literature cited therein -
2f 3,4-Dibromo- and 2,3-dichloro-2(5H)-furanone:
Bellina F.Anselmi C.Martina F.Rossi R. Eur. J. Org. Chem. 2003, 2290 ; and literature cited therein -
3a Dibromomethylenation:
Ramirez F.Desai NB.McKelvie N. J. Am. Chem. Soc. 1962, 84: 1745 -
3b Br,Li exchange/rearrangement:
Köbrich G.Trapp H.Flory K.Drischel W. Chem. Ber. 1966, 99: 689 -
3c Sequential dibromomethylenation/Br,Li exchange/rearrangement:
Corey EJ.Fuchs PL. Tetrahedron Lett. 1972, 3769 - With organomagnesiums:
-
4a
Minato A.Suzuki K.Tamao K. J. Am. Chem. Soc. 1987, 109: 1257 ; gem-dichloroalkenes -
4b
Bryant-Friedrich A.Neidlein R. Synthesis 1995, 1506 -
4c
Braun M.Rahematpura J.Bühne C.Paulitz TC. Synlett 2000, 1070 - With organozincs:
-
5a
Ref. [4a] (gem-dichloroalkenes).
-
5b
Minato A. J. Org. Chem. 1991, 56: 4052 -
5c
Panek JS.Hu T. J. Org. Chem. 1997, 62: 4912 -
5d
Ogasawara M.Ikeda H.Hayashi T. Angew. Chem. Int. Ed. 2000, 39: 1042 ; Angew. Chem. 2000, 112, 1084 -
5e
Shi J.-c.Zeng X.Negishi E.-i. Org. Lett. 2003, 5: 1825 - With organocoppers:
-
6a
Uenishi J.Matsui K.Ohmiya H. J. Organomet. Chem. 2002, 653: 141 -
6b
Uenishi J.Matsui K. Tetrahedron Lett. 2001, 42: 4353 - 7 With organozirconiums:
Xu C.Negishi E.-i. Tetrahedron Lett. 1999, 40: 431 - With organoborons:
-
8a
Roush WR.Brown BB.Drozda SE. Tetrahedron Lett. 1988, 29: 3541 -
8b
Roush WR.Moriarty KJ.Brown BB. Tetrahedron Lett. 1990, 31: 6509 -
8c
Baldwin JE.Chesworth R.Parker JS.Russell AT. Tetrahedron Lett. 1995, 36: 9551 -
8d
Roush WR.Koyama K.Curtin ML.Moriarty KJ. J. Am. Chem. Soc. 1996, 118: 7502 -
8e
Roush WR.Reilly ML.Koyama K.Brown BB. J. Org. Chem. 1997, 62: 8708 -
8f
Hanisch I.Brückner R. Synlett 2000, 374 -
8g
Shen W. Synlett 2000, 737 -
8h
Frank SA.Chen H.Kunz RK.Schnaderbeck MJ.Roush WR. Org. Lett. 2000, 17: 2691 - With organotins:
-
9a
Shen W.Wang L. Tetrahedron Lett. 1998, 39: 7625 -
9b
Shen W.Wang L. J. Org. Chem. 1999, 64: 8873 -
10a
Ma S.Xu B.Ni B. J. Org. Chem. 2000, 65: 8532 -
10b
Moller B.Undheim K. Eur. J. Org. Chem. 2003, 332 -
11a
Brückner R. Chem. Commun. 2001, 141 -
11b
Brückner R. Curr. Org. Chem. 2001, 5: 679 -
12a
Knight DW. Contemp. Org. Synth. 1994, 1: 287 -
12b
Negishi E.-i.Kotora M. Tetrahedron 1997, 53: 6707 -
12c
Rossi R.Bellina F. In Targets in Heterocyclic Systems: Chemistry and Properties Vol. 5:Attanasi OA.Spinelli D. Società Chimica Italiana; Roma: 2002. p.169-198 -
12d
Carter NB.Nadany AE.Sweeney JB. J. Chem. Soc., Perkin Trans. 1 2002, 2324 - 13
Brückner R.Suffert J. Synlett 1999, 657 ; and literature cited therein - 14
Dubois E.Beau J.-M. J. Chem. Soc., Chem. Commun. 1990, 1191 - 15
Kim W.-S.Kim H.-J.Cho C.-G. Tetrahedron Lett. 2002, 43: 9015 - 16
Trecourt F.Mallet M.Mongin F.Quéguiner G. Tetrahedron 1995, 51: 11743 - 17
Wolff L.Rüdel F. Liebigs Ann. 1896, 294: 183 ; Structural assignments: Ref.(2); ref. (Z-5) - 18
Manny AJ.Kjelleberg S.Kumar N.de Nys R.Read RW.Steinberg P. Tetrahedron 1997, 51: 15813 -
19a
Koch H.Pirsch J. Monatsh. Chem. 1962, 93: 661 -
19b
Wells PR. Aust. J. Chem. 1963, 16: 165 - 22
Still WC.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923 - 23
Labadie JW.Tueting D.Stille JK. J. Org. Chem. 1983, 48: 4634 - 24 Method:
Gilman H.Rosenberg SD. J. Am. Chem. Soc. 1953, 75: 2507 -
25a
Farina V. Pure Appl. Chem. 1996, 68: 73 -
25b
Entwistle DA.Jordan SI.Montgomery J.Pattenden G. Synthesis 1998, 603 -
25c
Amatore C.Bahsoun AA.Jutand A.Meyer G.Ntepe AN.Ricard L. J. Am. Chem. Soc. 2003, 125: 4212 -
30a
Uenishi J.Kawahama R.Shiga Y.Yonemitsu O. Tetrahedron Lett. 1996, 37: 6759 -
30b
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1996, 61: 5716 -
30c
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1998, 63: 8965 -
30d
Tietze LF.Nöbel T.Spescha M. J. Am. Chem. Soc. 1998, 120: 8971 - Method, albeit without sonication:
-
32a
Villa MJ.Lete E.Badia D.Dominguez E. J. Chem. Res., Synop. 1987, 418 -
32b
Farmer EH.Healey AT. J. Chem. Soc. 1927, 1060 - 34
Xu D.Sharpless KB. Tetrahedron Lett. 1994, 35: 4686 - 35
Pohmakotr M.Tuchinda P.Premkaisorn P.Reutrakul V. Tetrahedron 1998, 54: 11297 - 36
Rousset S.Abarbri M.Thibonnet J.Duchêne A.Parrain J.-L. Org. Lett. 1999, 1: 701 - Alternative ways to alkylidenebutenolides of this substitution pattern:
-
37a
Negishi E.-i.Kotora M. Synthesis 1997, 121 -
37b
Boukouvalas J.Lachance N.Ouellet M.Trudeau M. Tetrahedron Lett. 1998, 39: 7665 -
37c
Rousset S.Thibonnet J.Abarbri M.Duchêne A.Parrain J.-L. Synlett 2000, 260 -
38a
Sorg, A. Dissertation (in progress)
-
38b
Brückner R.Siegel K.Sorg A. In Strategies and Tactics in Natural Product Synthesis Vol. 5:Harmata M. Elsevier/Academic Press; Orlando: p.in press
References
5-(Dibromomethylene)-2(5 H )-furanone ( 2): 3,5-Dibromolevulinic acid (6; 4.77 g, 17.4 mmol), oleum (18 mL, 65% SO3), and concentrated H2SO4 (9 mL) were stirred at 50-60 °C for 6 min. The solution was poured on ice and extracted with CH2Cl2 (3 × 30 mL). The combined organic extracts were dried (Na2SO4) and evaporated under reduced pressure. After flash chromatography on silica gel [22] (cyclohexane:EtOAc 15:1Æ5:1) compound 2 (1.22 g, 28%) was obtained as a slightly yellow solid (mp 132-134 °C). 1H NMR (300 MHz, CDCl3): δ = 6.41 (d, J 3,4 = 5.6 Hz, 3-H), 7.67 (d, J 4,3 = 5.6 Hz, 4-H).
21( Z )-4-Bromo-5(bromomethylene)-2(5 H )-furanone ( Z- 5): 3,5-Dibromolevulinic acid (6; 912 mg, 3.33 mmol) and concentrated H2SO4 (20 mL) were stirred at r.t. for 20 min and at 85 °C for 30 min. The solution was poured on ice and extracted with CH2Cl2 (3 × 30 mL). The combined organic extracts were dried (Na2SO4) and evaporated under reduced pressure. After flash chromatography on silica gel [22] (cyclohexane:EtOAc 15:1Æ5:1) compound Z-5 (346 mg, 41%) was obtained as a slightly yellow solid (mp 96-97 °C). 1H NMR (300 MHz, CDCl3): δ = 6.41 (s, 1′-H), 6.50 (s, 3-H).
26The stereochemical problem was clarified by the (albeit small) NOE observed at 2′-H (δ = 7.28 ppm in CDCl3) while irradiating 4-H (δ = 8.02 ppm) of the isomer labeled E-7. The regiochemistry problem was solved by the occurrence of two vicinal Csp2 -H/Csp2 -H couplings (J = 11.7 Hz, 15.8 Hz) for the olefinic protons of the isomer designated Z-13 as contrasting with only one such coupling (J = 16.1 Hz) in the isomer designated Z-17. The same answer came from the occurrence of one olefinic 1H NMR singlet in Z-13 (δ = 6.21 ppm) as opposed to two such singlets in Z-17 (δ = 6.28 and 6.31 ppm).
27The differentiation of compound Z-9 from stereoisomer E-9 followed from irradiating 4-H (δ = 7.87 ppm in CDCl3) and the resulting increase of absorption by 2′-H (δ = 7.07 ppm). Butenolide Z-14 was distinguished from the isomeric structure iso-14 by the occurrence of two olefinic 3-bond H,H couplings (J 1 ′ ,2 ′ = 11.4 Hz, J 3 ′ ,2 ′ = 15.8 Hz) rather than one. Monocoupling product Z-16 was differentiated from regioisomer iso-16 by an NOE experiment: irradiation of ortho-H (δ = 7.78-7.83 ppm in CDCl3) enhanced only the absorption by 1′-H (δ = 6.36 ppm) and not by 1′-H and 3-H as expected for iso-16.
28( Z )-4-Bromo-5-( trans -3-phenyl-2-propenylidene)-2(5 H )-furanone ( Z -14): 1H NMR (300 MHz, CDCl3): δ = 6.30 (d, J 1 ′ ,2 ′ = 11.4 Hz, 1′-H), 6.37 (s, 3-H), 6.93 (d, J 3 ′ ,2 ′ = 15.8 Hz, 3′-H), 7.25-7.41 (m, 2′-H, 2 × meta-H, para-H), 7.50-7.53 (m, 2 × ortho-H). 13C NMR (125.7 MHz, CDCl3): δ = 114.51 (C-1′), 119.11 (C-3), 121.01 (C-2′), 127.40 (2 × C ortho ), 128.92 (2 × C meta ), 129.41 (C para ), 136.11 and 136.19 (C-4, C ipso ), 140.13 (C-3′), 147.23 (C-5), 166.64 (C-2). Anal. Calcd for C13H9BrO2 (276.5): C, 56.34; H, 3.27. Found: C, 56.36; H, 3.19.
29( Z )-5-(1-Bromo-1-phenylmethylene)-2(5 H )-furanone ( Z -11): 1H NMR (300 MHz, CDCl3): δ = 6.31 (d, J 3,4 = 5.6 Hz, 3-H), 7.41-7.49 (m, C6H5 and 4-H). 13C NMR (75.4 MHz, CDCl3): δ = 110.88 (C-1′), 120.80 (C-3), 128.75 and 130.11 (2 × C ortho , 2 × C meta ), 130.23 (C para ), 135.39 (C ipso ), 140.88 (C-4), 149.10 (C-5), 168.46 (C-2). Anal. Calcd for C11H7BrO2 (250.5): C, 52.62; H, 2.81. Found: C, 52.66; H, 2.70.
31While we debrominated 1,1-dibromoolefin 2 using Pd(PPh3)4 and HSnBu3 (ÆZ-10, Scheme [4] ) the same reagents [30] or variations thereof [Pd(PPh3)4/HSiEt3 or HSi(SiMe3)3 or NH4HCO2; Pd(dba)2 or NiCl2(PPh3)2/HSnBu3] failed to reduce 1,3-dibromodiene Z-5 due to inertness (15 was not formed, Scheme [5] ).
33The C1 ′ = Cγ configuration of debromination product E-8 followed from the NOE’s induced by irradiating, in CDCl3 solution, 4-H (δ = 7.84 ppm): The absorption of 1′-H (δ = 6.50 ppm) remained unaltered while the absorption of 2′-H (δ = 7.02 ppm) increased. In Z-8 an analogous assignment was impossible because the resonances of 4-H and 2′-H overlapped. The C1 ′ = Cγ configurations of the debromination products E-12 and Z-12 were established by the absence(presence) of an NOE at 1′-H (δ = 6.81 ppm and δ = 6.03 ppm, respectively, in CDCl3) when irradiating 4-H (δ = 7.82 ppm and δ = 7.49 ppm, respectively).