Subscribe to RSS
DOI: 10.1055/s-2004-834906
Conversion of Meso to dl Form and Vice Versa in Bisphosphonates: Synthesis and Structures of New Meso, dl and (Meso + dl) Bisphosphonates Derived from Cyclic Phosphites and Dialkyl Acetylenedicarboxylates
Publication History
Publication Date:
02 November 2004 (online)

Abstract
The bisphosphonates [(OCH2CR2CH2O)P(O)CHC(O)OR′]2 [R = R′ = Me (5), R = Me, R′ = Et (6), R = Et, R′ = Me (7), R = R′ = Et (8)], [CH2(6-t-Bu-4-Me-C6H4O)2P(O)CHC(O)OR]2 [R = Me (9), Et (10)] and [(OCH2CMe2CH2O)P(S)CHC(O)OR]2 [R = Me (11), Et (12)] have been prepared by the reaction of the corresponding cyclic phosphites with dimethyl acetylenedicarboxylate or diethyl acetylenedicarboxylate in the presence of a base [Et3N or n-BuLi]. The structures of dl-, meso- and (dl + meso) forms [6a, 6b and 6ab] of 6 as well as the meso form of 8 are determined from X-ray crystallography. By means of combined X-ray structural and 31P NMR spectroscopic investigations, it is shown that the meso form can be converted to the dl form and vice versa. A possible rationale invoking the intermediacy of an enolic form is proposed for this observation.
Key words
bisphosphonates - epimerization - diastereomers - X-ray structures - 31P NMR
-
1a
Eliel EL. Stereochemistry of Carbon Compounds McGraw-Hill Inc.; New Delhi: 1985. Chap. 4. -
1b
Carey FA.Sundberg RJ. Advanced Organic Chemistry, Part A 4th ed.: Kluwer Academic/Plenum; New York: 2000. Chap. 2. - Selected references:
-
2a
Pudovik AN.Konovalova IV. Synthesis 1979, 81 -
2b
Mikroyannidis JA. Phosphorus, Sulfur Silicon Relat. Elem. 1987, 32: 113 -
2c
Caesar JC.Griffiths DV.Griffiths PA.Tebby CJ. J. Chem. Soc., Perkin Trans. 1 1989, 2795 -
2d
Shen Y.Zhang Z. J. Chem. Res., Synop. 1998, 642 -
2e
Tedeschi L.Enders D. Org. Lett. 2001, 3: 3515 -
2f
Han Li-B.Zhao C.-Q.Tanaka M. J. Org. Chem. 2001, 66: 5929 -
2g
Zhao C.-Q.Han L.-B.Goto M.Tanaka M. Angew. Chem. Int. Ed. 2001, 40: 1929 -
2h
Han Li-B.Zhao C.-Q.Onozawa S.-Y.Goto M.Tanaka M. J. Am. Chem. Soc. 2002, 124: 3842 - 3
Burgada B.Mohri A. Phosphorus, Sulfur Silicon Relat. Elem. 1982, 13: 85 - 4
Beghetto V.Matteoli U.Scrivanti A. Chem. Commun. 2000, 155 - Selected references:
-
5a
Chaloner PA. Handbook of Coordination Catalysis in Organic Chemistry Butterworth; London: 1986. Chap. 4. -
5b
Collman JP.Hegedus LS.Norton JR.Finke RG. Principles and Applications of Organotransition Metal Chemistry University Science Books; Hill Valley, CA: 1987. -
5c
Comprehensive Organic Synthesis
Vol. 8:
Trost BM. Pergamon; Oxford UK: 1991. p.667-792 -
5d
Parshall GW.Ittel SD. Homogeneous Catalysis John Wiley & Sons; New York: 1992. p.25-50 - Selected references:
-
6a
Davis AA.Rosén JJ.Kiddle JJ. Tetrahedron Lett. 1998, 39: 6263 -
6b
Takacs JM.Jaber MR.Clement F.Walters C. J. Org. Chem. 1998, 63: 6757 -
6c
Shen Y.Ni J.Li P.Sun J. J. Chem. Soc., Perkin Trans. 1 1999, 509 -
6d
Tago K.Kogen H. Org. Lett. 2000, 2: 1975 -
6e
Sun S.Turchi IJ.Xu D.Murray WV. J. Org. Chem. 2000, 65: 2555 -
6f
Vaes L.Rein T. Org. Lett. 2000, 2: 2611 -
6g
Reiser U.Jauch J. Synlett 2001, 90 -
6h
Crist RM.Reddy PV.Borhan B. Tetrahedron Lett. 2001, 42: 619 -
6i
Kawasaki T.Nonaka Y.Watanabe K.Ogawa A.Higuchi K.Terashima R.Masuda K.Sakamoto M. J. Org. Chem. 2001, 66: 1200 -
6j
Pedersen TM.Hansen EL.Kane J.Rein T.Helquist P.Norrby P.-O.Tanner D. J. Am. Chem. Soc. 2001, 123: 9738 -
6k
Motoyoshiya J.Kusaura T.Kokin K.Yokoya S.-I.Takaguchi Y.Narita S.Aoyama H. Tetrahedron 2001, 57: 1715 -
6l
Inoue H.Tsubouchi H.Nagaoka Y.Tomioka K. Tetrahedron 2002, 58: 83 -
6m
Huang X.Xiong Z.-C. Chem. Commun. 2003, 1714 -
6n
Zheng S.Barlow S.Parker TC.Marder SR. Tetrahedron Lett. 2003, 44: 7989 -
6o
Xu C.Yuan C. Tetrahedron 2004, 60: 3883 -
7a
Kumaraswamy S.Kumara Swamy KC. Tetrahedron Lett. 1997, 38: 2183 -
7b
Muthiah C.Praveen Kumar K.Kumaraswamy S.Kumara Swamy KC. Tetrahedron 1998, 54: 14315 -
7c
Muthiah C.Praveen Kumar K.Aruna Mani C.Kumara Swamy KC. J. Org. Chem. 2000, 65: 3733 -
7d
Muthiah C.Senthil Kumar K.Vittal JJ.Kumara Swamy KC. Synlett 2002, 1787 -
7e
Chakravarty M.Srinivas B.Muthiah C.Kumara Swamy KC. Synthesis 2003, 2368 - Selected references:
-
8a
Hilderbrand RL. The Role of Phosphonates in Living Systems CRC Press; Boca Raton, FL: 1982. -
8b
Corbridge DEC. Phosphorus 2000-Chemistry, Biochemistry and Technology Elsevier; Amsterdam: 2000. -
8c
Osiecka R.Janas KM. Plant Physiol. Biochem. 1998, 36: 805 -
8d
Aminophosphonic and Aminophosphinic Acids, Chemistry and Biological Activity
Kukhar VP.Hudson HR. John Wiley & Sons; Chichester, UK: 2000. -
8e
Martel S.Clément J.-L.Muller A.Culcasi M.Pietri S. Bioorg. Med. Chem. 2002, 10: 1451 - Selected references:
-
9a
Boutevin B.Hamoui B.Parisi J.-P.Améduri B. Eur. Polym. J. 1996, 32: 159 -
9b
Derouet D.Cauret L.Brosse J.-C. Eur. Polym. J. 2003, 39: 671 -
9c
Frantz R.Carré F.Durand J.-O.Lanneau GF. New J. Chem. 2001, 25: 188 -
9d
Kanzaki T.Matsuda A.Kotani Y.Tatsumisago M.Minami T. Chem. Lett. 2000, 1314 - Compound 1 is well known (see ref.7c) and 2 is similar. For details on 3 and 4, see:
-
10a
Kumaraswamy S.Senthil Kumar K.Raja S.Kumara Swamy KC. Tetrahedron 2001, 57: 8181 -
10b
Kumara Swamy KC.Kumaraswamy S.Raja S.Senthil Kumar K. J. Chem. Crystallogr. 2001, 31: 51 - 11
Sheldrick GM. SHELX-97 University of Göttingen; Germany: 1997. - 13
Perrin DD.Armarego WLF.Perrin DR. Purification of Laboratory Chemicals Pergamon; Oxford, UK: 1986.
References
It can be noted that the proton attached to the carbon α to the phosphorus can be removed in the presence of a base (Horner-Wadsworth-Emmons reaction); in the present case it is suggested that the proton migrates due to thermal rearrangement.