Subscribe to RSS
DOI: 10.1055/s-2004-837204
Access to Unnatural Glycosyl Amino Acid Building Blocks via a One-Pot Ritter Reaction
Publication History
Publication Date:
17 December 2004 (online)

Abstract
α-d-Galacto-2-deoxy-oct-3-ulopyranosonic acids, α-d-gluco-2-deoxy-oct-3-ulopyranosonic acids and α-l-galacto-2,8-dideoxy-oct-3-ulopyranosonic acids can be converted into unnatural glycosyl amino acids via a one-pot intramolecular Ritter reaction. Initially, a ketopyranoside-based acid condenses under Lewis acid-promoted conditions with a nitrile (benzonitrile or acetonitrile) and a partially protected diamino ester (Boc-DAB-Ot-Bu, Boc-Orn-Ot-Bu) to form unnatural glycosyl amino esters. The resulting glycosyl amino esters are useful building blocks for solid-phase glycopeptide synthesis. For example, the glycosyl amino acid derived by condensation of α-d-galacto-2-deoxy-oct-3-ulopyranosonic acid with benzonitrile and DAB was used to replace serine in the potent opioid peptide sequence H2N-Tyr-d-Thr-Gly-Phe-Leu-Ser-CONH2.
Key words
carbohydrates - glycopeptides - combinatorial chemistry - glycosyl amino acids - peptides
- 1
Dwek RA. Chem. Rev. 1996, 96: 683 - 2
Varki A. Glycobiology 1993, 3: 97 - 3
Grochee FC.Gramer MJ.Andersen DC.Bahr JB.Rasmusen JR. In Frontier in Bioprocessing IITodd CP.Sikdar SK.Bier M. American Chemical Society; Washington: 1992. p.199 - 4
Fisher JF.Harrison AW.Bundy GL.Wilkinson KF.Rush BD.Ruwart MJ. J. Med. Chem. 1991, 34: 3140 - 5
Mehta S.Meldal M.Duus JO.Bock K. J. Chem. Soc., Perkin Trans. 1 1999, 1445 ; and references cited therein - 6
Lohof E.Planker E.Mang C.Burkhart F.Dechantsreiter MA.Haubner R.Wester H.-J.Schwaiger M.Hölzemann G.Goodman SL.Kessler H. Angew. Chem. Int. Ed. 2000, 39: 2761 - 7
Weiss JB.Lote CJ.Bobinski H. Nature (London) New Biol. 1971, 234: 25 - 8
Hofsteenge J.Müller DR.Beer T.Löffler A.Richter WJ.Vliegenhart JFG. Biochemistry 1994, 33: 13524 - For recent reviews on artificial glycosylamino acids, sugar amino acids and combinatorial carbohydrate conjugates see:
-
9a
Dondoni A.Marra A. Chem. Rev. 2000, 100: 4395 -
9b
Peri F.Cipolla L.Forni E.La Feria B.Nicotra F. Chemtracts 2001, 14: 481 -
9c
Barkley A.Arya P. Chem.-Eur. J. 2001, 7: 555 -
9d
Gruner SAW.Locardi E.Lohof E.Kessler H. Chem. Rev. 2002, 102: 491 -
9e
Schweizer F. Angew. Chem. Int. Ed. 2002, 41: 230 ; and references cited therein -
10a
Saha UK.Roy R. Tetrahedron Lett. 1995, 36: 3635 -
10b
Saha U.Roy R. Tetrahedron Lett. 1997, 38: 7697 -
10c
Kim JM.Roy R. Tetrahedron Lett. 1997, 38: 3487 -
10d
Kim JM.Roy R. Carbohydr. Res. 1997, 298: 173 -
11a
Hoffmann M.Burkhart F.Hessler G.Kessler H. Helv. Chim. Acta 1996, 79: 1519 -
11b
Frey O.Hoffmann M.Kessler H. Angew. Chem., Int. Ed. Engl. 1995, 34: 2026 -
12a
Marcaurelle LA.Rodriguez EC.Bertozzi CR. Tetrahedron Lett. 1998, 39: 8417 -
12b
Peri F.Cipolla L.Rescigno M.La Ferla B.Nicotra F. Bioconjugate Chem. 2001, 12: 325 -
12c
Cipolla L.Rescigno M.Leone A.Peri F.La Ferla B.Nicotra F. Bioorg. Med. Chem. Lett. 2002, 10: 1639 - 14
Schweizer F.Lohse A.Otter A.Hindsgaul O. Synlett 2001, 1434 - 15
Lohse A.Schweizer F.Hindsgaul O. Comb. Chem. High Throughput Screening 2002, 5: 389 - 16
Orsini F.Di Teodoro E. Tetrahedron: Asymmetry 2003, 14: 2521 - 19
Bilsky EJ.Egleton RD.Mitchell SA.Palian MM.Daid P.Huber JD.Jones H.Yamamura HI.Janders H.Davis TP.Porreca F.Hruby VJ.Polt R. J. Med. Chem. 2000, 43: 2586 - 21
Stott K.Stonehouse J.Keeler J.Hwang TL.Shaka AJ. J. Am. Chem. Soc. 1995, 117: 4199 - 22
Elmore DT.Guthrie DJS.Kay G.Williams CH. J. Chem. Soc., Perkin Trans. 1 1988, 1051 - 23 Prepared according to the procedure by:
Maetz P.Rodriguez M. Tetrahedron Lett. 1997, 38: 4221 - 24 It has been suggested that incorporation of hydrophilic carbohydrate moieties into opioid peptides renders them amphipathic, promoting exchange between lipid and aqueous phases, which may lead to enhanced blood brain barrier penetration see:
Palian MM.Boguslavky VI.O’Brien DF.Polt R. J. Am. Chem. Soc. 2003, 125: 5823 - 27
Arya P.Barkley A.Randell K. J. Comb. Chem. 2002, 4: 193 - 29
Handlon AL.Fraser-Reid B. J. Am. Chem. Soc. 1993, 115: 3796
References
It is noteworthy that these β-galactosyl amides are not accessible via acylation of the corresponding galactosyl-amine. [14]
17Yield calculation is based on the addition of the partially protected diamino ester.
18Products were identified by MS.
20Yields are based on isolated amount after reverse phase HPLC purification. Characteristic data for 22: 1H NMR (600 MHz, CD3OD, r.t.): δ = 3.93 (dd, J = 3.03 Hz, J < 1 Hz, H-6Gal), 4.02 (d, J = 9.8 Hz, H-4Gal), 6.80 (d, J = 8.4 Hz, 2 H), 7.15 (d, J = 8.4 Hz, 2 H), 7.20-7.35 (m, 4 H), 7.45-7.53 (m, 2 H), 7.55-7.62 (m, 2 H), 7.82 (d, J = 7.10 Hz, 2 H). MS (ES): m/z calcd [M + H]+: 1022.48; found: 1022.65.
25The stereochemistry at the anomeric center in 28 has not yet been determined.
26We speculate that the axial substituent at the C-4 position in mannose-configurated ulosonic acid 8 and rhamnose-configurated ulosonic acid 16 destabilizes the cyclic form and favors the open ketone form resulting in low yields of the corresponding unnatural glycosyl amino acids (Scheme [6] ).
28A 40 ms gaussian pulse with a 560 ms mixing time was used.
30Cyanoalanine and nitriles with branching at the β-position have previously been used without success in an intermolecular Ritter reaction (see ref. 29).