Synthesis 2005(17): 2865-2870  
DOI: 10.1055/s-2005-872204
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2′-Deoxy-2′-C-α-methylpurine Nucleosides

Nan-Sheng Li*, Joseph A. Piccirilli*
Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology and Department of Chemistry, University of Chicago, 5841 S. Maryland Ave., MC 1028, Chicago, IL 60637, USA
Fax: +1(773)7020271; e-Mail: nli@uchicago.edu; e-Mail: jpicciri@uchicago.edu;
Further Information

Publication History

Received 15 April 2005
Publication Date:
23 August 2005 (online)

Abstract

2′-Deoxy-2′-C-α-methylribonucleosides provide valuable biochemical probes with which to study RNA structure and function. Using methyl 2-acetoxymethyl-3,5-di-O-(tert-butyldi­methylsilyl)-d-ribofuranoside (1) as a glycosylating agent, we achieved in four steps an improved synthesis of 2′-deoxy-2′-C-α-methyladenosine (8) and the first synthesis of 2′-deoxy-C-α-methylguanosine (9) in 25% and 17% overall yield, respectively.

    References

  • 1a Auffinger P. Westhof E. J. Mol. Biol.  1997,  274:  54 ; and references cited therein
  • 1b Simons RW. Grunberg-Manago M. RNA Structure and Function   Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1998. 
  • 2a Breaker RR. Nature  2004,  432:  838 
  • 2b Uhlmann E. Peyman A. Chem. Rev.  1990,  90:  543 
  • 2c Cooke ST. Ann. Rev. Pharmacol. Toxicol.  1992,  32:  329 
  • 2d Schmit C. Bevierre M.-O. Mesmaeker AD. Altmann K.-H. Bioorg. Med. Chem. Lett.  1994,  4:  1969 
  • 3a Gesteland RF. Cech TR. Atkins JF. The RNA World   2nd ed.:  Cold Spring Harbor Laboratory Press; Cold Spring Harbor New York: 1999. 
  • 3b Eckstein F. Lilley DMJ. Catalytic RNA   Springer-Verlag; Berlin Germany: 1997. 
  • 4 Gordon PM. Fong R. Deb S. Li N.-S. Schwans JP. Ye J.-D. Piccirilli JA. Chem. Biol.  2004,  11:  237 
  • 5 Schwans JP. Li N.-S. Piccirilli JA. Angew. Chem. Int. Ed.  2004,  43:  3033 
  • 6 Li N.-S. Piccirilli JA. J. Org. Chem.  2004,  69:  4751 
  • 7 Novak JJK. Smejkal J. Sôrm F. Tetrahedron Lett.  1969,  1627 
  • 8 Cicero DO. Neuner PJS. Franzese O. D’Onofrio C. Iribarren AM. Bioorg. Med. Chem. Lett.  1994,  4:  861 
  • 9a Matsuda A. Takenuki K. Sasaki T. Ueda T. J. Med. Chem.  1991,  34:  234 
  • 9b Matsuda A. Itoh H. Takenuki K. Sasaki T. Ueda T. Chem. Pharm. Bull.  1988,  36:  945 
  • 10 Schmit C. Synlett  1994,  238 
  • 11a Vorbruggen H. Krolikiewicz K. Bennua B. Chem. Ber.  1981,  114:  1234 
  • 11b Garner P. Ramakanth S. J. Org. Chem.  1988,  53:  1294 
  • 11c Vorbruggen H. Ruh-Pohlenz C. Handbook of Nucleoside Synthesis   Wiley; New York: 2001.  p.94-98  
  • 11d Robins MJ. Zou R. Guo Z. Wnuk SF. J. Org. Chem.  1996,  61:  9207 
  • 12 The 13C NMR data of the adenine ring are assigned as follows: For 2a (CDCl3): δ = 152.6 (C-6), 151.7 (C-2), 149.3 (C-4), 142.8 (C-8), 122.2 (C-5) and 2b (CDCl3): δ = 152.7 (C-6), 151.8 (C-2), 149.5 (C-4), 141.6 (C-8), 123.2 (C-5); cf. experimental section. For 7-methyladenine (DMSO-d 6): δ = 159.82 (C-4), 152.31 (C-2), 151.91 (C-6), 145.94 (C-8), 111.77 (C-5) and 9-methyladenine (DMSO-d 6): δ = 155.98 (C-6), 152.50 (C-2), 149.94 (C-4), 141.47 (C-8), 118.72 (C-5); see: Chenon M.-T. Pugmire RJ. Grant DM. Panzica RP. Townsend LB. J. Am. Chem. Soc.  1975,  97:  4627 
  • 13 The 13C NMR data of the guanine ring are assigned as follows: For 3a (CDCl3): δ = 155.9 (C-6), 148.2 (C-4), 147.4 (C-2), 138.9 (C-8), 120.4 (C-5), 3b (CDCl3): δ = 156.0 (C-6), 148.4 (C-4), 147.4 (C-2), 137.0 (C-8), 120.8 (C-5) and 3c (CDCl3): δ = 156.8 (C-6), 152.8 (C-4), 148.2 (C-2), 141.6 (C-8), 111.4 (C-5); cf. experimental section. For N 2-acetyl-2′,3′,5′-tri-O-acetyl-9-guanosine (DMSO-d 6): δ = 154.68 (C-6), 148.58 (C-4), 148.22 (C-2), 137.79 (C-8), 120.38 (C-5) and N 2-acetyl-2′,3′,5′-tri-O-acetyl-7-guanosine (DMSO-d 6): δ = 158.37 (C-6), 152.17 (C-4), 147.51 (C-2), 144.12 (C-8), 110.56 (C-5); see: Boryski J. J. Chem. Soc., Perkin Trans. 2  1997,  649