Synthesis 2005(19): 3355-3361  
DOI: 10.1055/s-2005-918453
PAPER
© Georg Thieme Verlag Stuttgart · New York

Conversion of Alkyl Halides into Alcohols via Formyloxylation Reaction with DMF Catalyzed by Silver Salts

Antonio Abad*, Consuelo Agulló, Ana C. Cuñat, Ismael Navarro
Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, 46100-Burjassot, Valencia, Spain
Fax: +34(963)544328; e-Mail: antonio.abad@uv.es;
Further Information

Publication History

Received 11 May 2005
Publication Date:
28 October 2005 (online)

Abstract

The transformation of alkyl halides into alcohols via a two-step process based on the reaction with DMF catalyzed by Ag(I) salts followed by acid or basic hydrolysis of the intermediate formate ester has been evaluated. The results show that a large variety of primary and some secondary alkyl halides can be transformed efficiently into the corresponding alcohols, making this alkyl halide to alcohol interconversion a valuable alternative to the existing procedures, particularly in molecules with labile functional groups that are generally involved in multistep synthesis.

    References

  • 1a Wilkinson SG. In Alcohols, Phenols, Ethers and Related Compounds, In Comprehensive Organic Chemistry, The Synthesis and Reactions of Organic Compounds   Vol. 1:  Barton DHR. Ollis WD. Sutherland IO. Pergamon Press; Oxford: 1979.  p.595 
  • 1b Mitsunobo O. In Synthesis of Alcohols and Ethers, In Comprehensive Organic Synthesis   Vol. 6:  Trost BN. Fleming I. Pergamon Press; Oxford: 1993.  p.2 
  • 1c Mulzer J. In Synthesis of Esters, In Comprehensive Organic Synthesis   Vol. 6:  Trost BN. Fleming I. Pergamon Press; Oxford: 1993.  p.335 
  • 2 Larock RC. Comprehensive Organic Transformations   VCH Publishers Inc.; New York: 1989.  p.481 
  • 3 Alexander J. Renyer ML. Veerapanane H. Synth. Commun.  1995,  25:  3875 ; and references cited therein
  • 4a San Filippo J. Chern CI. Valentine JS. J. Org. Chem.  1975,  40:  1678 
  • 4b Corey EJ. Nicolaou KC. Shibassaki M. Nachida Y. Shiner CS. Tetrahedron Lett.  1975,  3183 
  • 5 Gingras M. Chan TH. Tetrahedon Lett.  1989,  30:  279 
  • 6 Jones RA. Aldrichimica Acta  1976,  9:  35 
  • 7a McKillop A. Ford ME. Tetrahedron  1974,  30:  2467 
  • 7b Cookson PG. Davies AG. Roberts BPJCS. J. Chem. Soc., Chem. Commun.  1976,  1022 
  • For recent examples of C-X to C-O Ag-assisted conversions, see, in addition to the above mentioned bis(tributyltin)oxide/Ag(I)/DMF hydrolysis of primary halides:
  • 8a Toyonari I. Tokuyasu T. Masuyama A. Nojima M. McCullough KJ. Tetrahedron  2003,  59:  525 
  • 8b McCullough KJ. Tokuhara H. Masuyama A. Nojima M. Org. Biomol. Chem.  2003,  1:  1522 
  • 8c Loodworth AJ. Tallant Neil A. J. Chem. Soc., Chem. Commun.  1992,  5:  428 
  • 8d Harmann H.-J. Liebscher J. Synlett  2001,  96 
  • 8e Liang X. Lohse A. Bols M. J. Org. Chem.  2000,  65:  74327 
  • 8f Deota PT. Singh V. J. Chem. Res., Synop.  1996,  258 
  • 8g Busque F. Cid P. de March P. Figueredo M. Font J. Heterocycles  1995,  40:  387 
  • 8h Zarraga M. Alvarez E. Ravelo JL. Rodriguez V. Rodriquez ML. Martin JD. Tetrahedron Lett.  1990,  31:  1633 
  • 9 Challis BC. Challis WD. Amides and Related Compounds, In Comprehensive Organic Chemistry, The Synthesis and Reactions of Organic Compounds   Vol. 2:  Barton DHR. Ollis WD. Sutherland IO. Pergamon Press; Oxford: 1979.  p.1011 
  • 10 Matthews JS. Cookson JP. J. Org. Chem.  1969,  34:  3204 
  • 11 For the thermal reaction of tosylates with DMF, see: Suri SC. Rodgers SL. Radhakrishnan KV. Nair V. Synth. Commun.  1996,  26:  1031 
  • For detailed mechanistic studies on the thermal alkylation reaction of formamides and other amides with alkyl halides, see:
  • 12a Brace NO. J. Org. Chem.  1993,  58:  1804 
  • 12b Brace NO. J. Org. Chem.  1996,  61:  6504 ; and references cited therein
  • 13 Hayashi T, and Matsuo M. inventors; Ger. Offen. DE No  2,318.941.  ; Asahi Glass Co., Ltd
  • For other examples of thermal reactions of simple halides with DMF, see:
  • 14a Balsamo A. Epifani E. Giorgi I. Lapucci A. Macchia B. Macchia F. Farmaco, Ed. Sci.  1981,  36:  705 
  • 14b Kaabak LV. Tomilov AP. Varshavskii SL. Probl. Organ. Sinteza, Akad. Nauk SSSR, Otd. Obshch. i Tekhn. Khim.  1965,  32 ; Chem. Abstr. 1966, 64, 35341
  • 15 Nielson DG. The Chemistry of Amidines and Imidates   Patai S. J. Wiley & Sons; New York: 1975.  Chap. 9. p.400 
  • Several C-X (X = Br, I) to COCHO transformations by DMF/Ag(I) salt have been described in the literature, which were considered as unexpected reactions and generally in the context of cationic rearrangements promoted by Ag(I) in DMF, see:
  • 16a Chang R.-K. Kim K. Tetrahedron Lett.  2000,  41:  8499 
  • 16b Barks JM. Weingarten GG. Knight DW. J. Chem. Soc., Perkin Trans. 1  2000,  3469 
  • 16c Hamm S. Henning L. Findeisen M. Muller D. Welzel P. Tetrahedron  2000,  56:  1345 
  • 16d Hayashi N. Fujiwara K. Mura A. Tetrahedron  1997,  53:  12425 
  • 16e D’Angeli F. Cavicchioni G. Catelani G. Marchetti P. Maran F. Gazz. Chim. Ital.  1989,  119:  471 
  • 16f Bartlett PA. Ting PC. J. Org. Chem.  1986,  51:  2230 
  • 17 Nakamura E. Aoki S. Sekiya K. Oshino H. Kuwajima I. J. Am. Chem. Soc.  1987,  109:  8056 
  • 18 For the related reaction of bromocarvone, see: Devan N. Sridhar PR. Prabhu KR. Chandrasekaran S. J. Org. Chem.  2002,  67:  9417 
  • 20 Arrad O. Sasson Y. J. Org. Chem.  1990,  55:  2952 
  • 22 Carey FA. Sundberg RJ. Advanced Organic Chemistry, Part A: Structure and Mechanisms   4th Ed.:  Kluwer Academic/Plenum Publishers; New York: 2000.  Chap. 5. p.263 
  • 23 Ram RN. Meher NK. Tetrahedron  2002,  58:  2997 
  • 24 Wolinsky J. Hamsher JJ. Hutchins RO. J. Org. Chem.  1970,  35:  207 
  • 25 Armarego WFL. Perrin DD. Purification of Laboratory Chemicals   Butterworth Heinemann; Oxford: 1996. 
  • 26a Abad A. Agulló C. Cuñat AC. Navarro I. Ramirez de Arellano MC. Synlett  2001,  349 
  • 26b Abad A. Agulló C. Cuñat AC. Navarro I. Tetrahedron Lett.  2001,  42:  8965 
19

We have isolated the intermediate imidate salt i (Figure [2] ), formed in the formyloxylation reaction of chlorocarvone 1, by work up of the reaction mixture under anhydrous conditions. This salt has been characterized by 1H, 19F, and 13C NMR. 1H NMR (CDCl3): δ = 8.61 (s, N=CH), 6.80 (m, H-3), 5.44 and 5.28 (2 s, =CH2), 5.19 (AB system, J = 13 Hz, CH2O), 3.46 and 3.24 [2 s, N(CH3)2], 1.78 (s, CH3-2). 19F NMR (CDCl3, 282 MHz): δ = -152.5. 13C NMR (CDCl3): δ = 198.9 (CO), 167.1 (N=C), 144.5 (C-3), 142.6 (C-2), 137.7 (C-1′), 119.0 (C-2′′), 79.9 (CH2O), 42.9 (C-6), 41.9 (C-5), 37.7 and 36.5 (Me2N= ), 30.9 (C-4), 15.6 (CH3-2).

21

The more reactive bromide 7 can be directly transformed into the corresponding alcohol by treatment with H2O-CH3NO2/AgBF4. However, the yield of this transformation is significantly lower than that obtained with the DMF-based procedure, due to the formation of substantial amounts of CH3 (CH2)9O(CH2)9CH3 (up to 25%).