Abstract
An efficient and convenient method for the synthesis of primary and secondary monosubstituted
malononitriles has been developed. In this method, sodium borohydride in isopropanol
has a catalytic effect on the initial condensation between malononitrile and aldehydes
or ketones at 0 °C. The sodium borohydride also simultaneously acts as a reagent and
reduces the unsaturated intermediate formed in situ by the condensation. This simple
reductive alkylation method effectively consumes all malononitrile and selectively
produces only monosubstituted malononitriles. Unsymmetrically disubstituted malononitriles
are prepared via alkylation of these monosubstituted derivatives.
Key words
malononitrile - ketones - aldehydes - condensations - reductions
References
<A NAME="RM05005SS-1A">1a </A>
Qian F.
McCusker JE.
Zhang Y.
Main AD.
Chlebowski M.
Kokka M.
McElwee-White L.
J. Org. Chem.
2002,
67:
4086
<A NAME="RM05005SS-1B">1b </A>
Bloomfield JJ.
J. Org. Chem.
1961,
26:
4112
<A NAME="RM05005SS-2A">2a </A>
Wu Z.-L.
Li Z.-Y.
J. Org. Chem.
2003,
68:
2479
<A NAME="RM05005SS-2B">2b </A>
Meguro M.
Yamamoto Y.
J. Org. Chem.
1999,
64:
694
<A NAME="RM05005SS-2C">2c </A>
Díez-Barra E.
de la Hoz A.
Moreno A.
Sánchez-Verdú P.
J. Chem. Soc., Perkin Trans. 1
1991,
2589
<A NAME="RM05005SS-3A">3a </A>
Texier-Boullet F.
Foucaud A.
Tetrahedron Lett.
1982,
23:
4927
<A NAME="RM05005SS-3B">3b </A>
Cabello JA.
Campelo JM.
Garcia A.
Luna D.
Marinas JM.
J. Org. Chem.
1984,
49:
5195
<A NAME="RM05005SS-3C">3c </A>
Prout FS.
J. Org. Chem.
1953,
18:
928
<A NAME="RM05005SS-4A">4a </A>
Garden SJ.
Guimarães CRW.
Corréa MB.
de Oliveira CAF.
da Cunha Pinto A.
de Alencastro RB.
J. Org. Chem.
2003,
68:
8815
<A NAME="RM05005SS-4B">4b </A>
Zhang B.
Zhu X.-Q.
Lu J.-Y.
He J.
Wang PG.
Cheng J.-P.
J. Org. Chem.
2003,
68:
3295
<A NAME="RM05005SS-4C">4c </A>
Ranu BC.
Dutta J.
Guchhait SK.
Org. Lett.
2001,
3:
2603
<A NAME="RM05005SS-4D">4d </A>
Ranu BC.
Samanta S.
Tetrahedron
2003,
59:
7901
<A NAME="RM05005SS-5">5 </A>
Sammelson RE.
Allen MJ.
Synthesis
2005,
543
<A NAME="RM05005SS-6">6 </A>
Zhang Z.
Gao J.
Xia J.-J.
Wang G.-W.
Org. Biomol. Chem.
2005,
3:
1617
<A NAME="RM05005SS-7">7 </A>
Brown HC.
Wheeler OH.
Ichikawa K.
Tetrahedron
1957,
1:
214
<A NAME="RM05005SS-8">8 </A>
Isolated yield for the previous one-pot method (ref. 5) was 83% and the reaction time
was 10 min for the condensation step. The current yield was 78% in ≤6 min for both
steps.
<A NAME="RM05005SS-9">9 </A>
Chiriac CI.
Tanasa F.
Onciu M.
Tetrahedron Lett.
2003,
44:
3579
<A NAME="RM05005SS-10">10 </A> Condensation of malononitrile with acetone-d
6 was observed in this lab using NMR and TLC but complete condensation without any
catalyst takes more than 24 h at r.t. A solution of malononitrile and acetone in i -PrOH (0.5 M and 1.0 M, respectively; similar to our reaction conditions, but without
NaBH4 ) only produces small amounts (ca. 20%) of condensation product after 24 h at r.t.
when analyzed by TLC. For a recent report on the Knoevenagel condensation of malononitrile
with aromatic aldehydes in EtOH without catalyst, see:
Wang X.-S.
Zeng Z.-S.
Li Y.-L.
Shi D.-Q.
Tu S.-J.
Wei X.-Y.
Zong Z.-M.
Synth. Commun.
2005,
35:
1915
<A NAME="RM05005SS-11">11 </A>
Desai UV.
Pore DM.
Mane RB.
Solabannavar SB.
Wadgaonkar PP.
Synth. Commun.
2004,
34:
25
<A NAME="RM05005SS-12A">12a </A> For information about Meldrum’s acid pKa = 7.3 in DMSO, see:
Arnett EM.
Maroldo SG.
Schilling SL.
Harrelson JA.
J. Am. Chem. Soc.
1984,
106:
6759
<A NAME="RM05005SS-12B">12b </A> For information about malononitrile pKa = 11.1 in DMSO, see:
Matthews WS.
Bares JE.
Bartmess JE.
Bordwell FG.
Cornforth FJ.
Drucker GE.
Margolin Z.
McCallum RJ.
McCollum GJ.
Vanier NR.
J. Am. Chem. Soc.
1975,
97:
7006
<A NAME="RM05005SS-13A">13a </A>
Okada S,
Oohira D, and
Otaka K. inventors; PCT Int. Appl. WO 2004020399, .
; Chem. Abstr. , 140, 235428
<A NAME="RM05005SS-13B">13b </A>
Otaka T, and
Ohira D. inventors; Jpn. Kokai Tokkyo Koho JP 2004099597, .
; Chem. Abstr. , 140, 303517
<A NAME="RM05005SS-13C">13c </A>
Otaka K,
Oohira D, and
Suzuki M. inventors; PCT Int. Appl. WO 2002090321, .
; Chem. Abstr.
, 137, 352788
<A NAME="RM05005SS-13D">13d </A>
Otaka K,
Suzuki M, and
Oohira D. inventors; PCT Int. Appl. WO 2002089579, .
; Chem. Abstr.
, 137, 369842
<A NAME="RM05005SS-14">14 </A>
Yokoyama M.
Kashiwagi M.
Iwasaki M.
Fuhshuku K.
Ohta H.
Sugai T.
Tetrahedron: Asymmetry
2004,
15:
2817
<A NAME="RM05005SS-15">15 </A>
The second portion of NaBH4 was added after 90 min.
<A NAME="RM05005SS-16">16 </A>
Wada M.
Mitsunobu O.
Tetrahedron Lett.
1972,
13:
1279
<A NAME="RM05005SS-17">17 </A>
Echevarria A.
Martin M.
Perez C.
Rozas I.
Arch. Pharm. (Weinheim, Ger.)
1994,
327:
303
<A NAME="RM05005SS-18">18 </A>
Chikashita H.
Nishida S.
Miyazaki M.
Morita Y.
Itoh K.
Bull. Chem. Soc. Jpn.
1987,
60:
737
<A NAME="RM05005SS-19">19 </A>
Additional trimethylacetaldehyde was added after 60 min.
<A NAME="RM05005SS-20">20 </A>
Bauer T.
Thomann R.
Mülhaupt R.
Macromolecules
1998,
31:
7651
<A NAME="RM05005SS-21">21 </A>
The second portion of NaBH4 was added after 20 min.