Aktuelle Ernährungsmedizin 2007; 32(6): e1-e12
DOI: 10.1055/s-2007-971021
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Spielt eine erhöhte Fruktoseaufnahme und dadurch bedingte Hyperurikämie bei der Genese des metabolischen Syndroms eine Rolle?

Do Elevated Fructose Intake and Fructose-Induced Hyperuricemia Play a Role in the Genesis of Metabolic Syndrome?R.  Großklaus1 , M.  Pfeuffer2 , J.  Schrezenmeir2
  • 1Bundesinstitut für Risikobewertung (BfR), Berlin
  • 2Bundesforschungsanstalt für Ernährung und Lebensmittel (BfEL), Kiel
Further Information

Publication History

Publication Date:
28 November 2007 (online)

Zusammenfassung

Neue Forschungsergebnisse aus den USA belegen einen möglichen Einfluss von erhöhtem Fruktoseverzehr auf die Entwicklung der Adipositas und der damit verbundenen Hypertonie sowie Dyslipidämie. In einer Übersicht werden daher die infrage kommenden Mechanismen der metabolischen Wirkung von Fruktose und Harnsäure bei der multifaktoriellen Genese des metabolischen Syndroms diskutiert. Hyperurikämie ist assoziiert mit Bluthochdruck und anderen Störungen des metabolischen Syndroms. Hoher Fruktoseverzehr kann nicht nur zur Hyperurikämie führen, sondern auch zu einer Hypertriglyzeridämie, wobei die endotheliale Dysfunktion als gemeinsamer biochemischer Mechanismus für diese Störungen des metabolischen Syndroms eine zentrale Bedeutung besitzt. Harnsäure hemmt die Bioverfügbarkeit von Stickstoffmonooxid (NO) im Gefäßendothel und kann durch die Freisetzung von proinflammatorischen Mediatoren Entzündungszellen aktivieren, wodurch das atherogene Risiko erhöht wird. Unterstützt wird die in tierexperimentellen Untersuchungen aufgestellte Hypothese zur Beteiligung von Harnsäure als unabhängiger Risikofaktor bei der Entstehung der primären Hypertonie auch durch klinische Studien über die Wirkung von harnsäuresenkenden Medikamenten. Große epidemiologische und klinische Studien zeigen insbesondere, dass auch eine asymptomatische Hyperurikämie (> 4 mg/dl) bei der Prognose der Gefäßkomplikationen berücksichtigt werden sollte. Weitere prospektive Interventionsstudien sind jedoch erforderlich, um zu entscheiden, ob Harnsäure als ein diagnostisches Kriterium in die Definition des metabolischen Syndroms mitaufgenommen werden sollte. Es besteht auch Forschungsbedarf, ab welcher Dosierung und unter welchen Begleitumständen Fruktose die Harnsäurespiegel und Lipidspiegel sowie die Bildung von Advanced Glycation Endproducts (AGEs) und modifizierten Lipoproteinen und den dadurch ausgelösten oxidativen Stress erhöht. Die Hinweise aus tierexperimentellen und klinischen Studien, dass durch erhöhte Harnsäurespiegel ausgelöste Endothelschäden beim Fetus zur Verminderung der Anzahl der Glomerula führen, und damit die Entstehung einer Hypertonie schon bei Kindern fördern könnte, bedürfen der weiteren Abklärung.

Abstract

New research findings from the USA confirm a possible effect of elevated fructose intake on the development of obesity and the related hypertension and dyslipidemia. The possible mechanisms of the metabolic impact of fructose and uric acid in the multifactorial genesis of metabolic syndrome are, therefore, discussed in an overview. Hyperuricemia is associated with high blood pressure and other disorders of metabolic syndrome. High fructose consumption can lead not only to hyperuricemia but also to hypertriglyceridemia. In this context, endothelial dysfunction takes on key importance as a common biochemical mechanism for these disorders of the metabolic syndrome. Uric acid inhibits the bioavailability of nitrogen oxide (NO) in the vascular endothelium. It can activate inflammatory cells by releasing pro-inflammatory mediators thereby increasing the atherogenic risk. The hypothesis advanced in animal experiments that uric acid is an independent risk factor in the onset of primary hypertension is backed by clinical studies on the impact of uric acid-reducing drugs. Comprehensive epidemiological studies and clinical trials show, more particularly, that asymptomatic hyperuricemia (> 4 mg/dl) should also be taken into account when predicting vascular complications. Further prospective intervention studies are, however, necessary in order to determine whether uric acid should be included as a diagnostic criterion in the definition of metabolic syndrome. There is also a need for research into from what dose onwards and under what accompanying circumstances fructose increases the uric acid and lipid levels and promotes the formation of advanced glycation end products (AGEs) and modified lipoproteins as well as the resulting oxidative stress. The indications from animal experiments and clinical trials that endothelial damage to the foetus caused by the elevated uric acid level can reduce the number of glomeruli and thus promote the onset of hypertension already in children, need to be examined further.

  • 1 Feig D I, Nakagawa T, Ananth Karumanchi S, Oliver W J, Kang D-H, Finch J, Johnson R J. Hypothesis: Uric acid, nephron number, and the pathogenesis of essential hypertension.  Kidney Int. 2004;  66 281-287
  • 2 Feig D I, Kang D H, Nakagawa T, Mazzali M, Johnson R J. Uric acid and hypertension.  Curr Hypertens Rep. 2006;  8 111-115
  • 3 Feig D I, Rodriguez-Iturbe B, Nakagawa T, Johnson R J. Nephron number, uric acid, and renal microvascular disease in the pathogenesis of essential hypertension.  Hypertension. 2006 b;  48 25-26
  • 4 Feig D I, Johnson R J. Hyperuricemia in childhood primary hypertension.  Hypertension. 2003;  42 247-252
  • 5 Kanellis J, Feig D I, Johnson R J. Does asymptomatic hyperuricaemia contribute to the development of renal and cardiovascular disease? An old controversy renewed.  Nephrology. 2004;  9 394-399
  • 6 Khosla U M, Zharikov S, Finch J L, Nakagawa T, Roncal C, Mu W, Krotova K, Block E R, Prabhakar S, Johnson R J. Hyperuricemia induces endothelial dysfunction.  Kidney Int. 2005;  67 1739-1742
  • 7 Nakagawa T, Tuttle K R, Short R A, Johnson R J. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome.  Nature Clin Practice Nephrol. 2005;  1 80-86
  • 8 Nakagawa T, Hu H, Zharikov S, Tuttle K R, Short R A, Glushakova O, Ouyang X, Feig D I, Block E R, Herrera-Acosta J, Patel J M, Johnson R J. A causal role for uric acid in fructose-induced metabolic syndrome.  Am J Physiol Renal Physiol. 2006;  290 F625-631
  • 9 Nakagawa T, Kang D H, Feig D, Sanchez-Lozada L G, Srinivas T R, Sautin Y, Ejaz A A, Segal M, Johnson R J. Unearthing uric acid: an ancient factor with recently found significance in renal and cardiovascular disease.  Kidney Int. 2006;  69 1722-1725
  • 10 Sánchez-Lozada L G, Nakagawa T, Kang D-H, Feig D I, Franco M, Johnson R J, Herrra-Acosta J. Hormonal and cytokine effects of uric acid.  Curr Opin Nephrol Hypertens. 2006;  15 30-33
  • 11 Grundy S M, Cleeman J I, Daniels S R, Donato K A, Eckel R H, Franklin B A, Gordon D J, Krauss R M, Savage P J, Smith S C, Spertus J A, Costa F. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement.  Circulation. 2005;  112 2735-2752
  • 12 Grundy S M, Cleeman J I, Daniels S R, Donato K A, Eckel R H, Franklin B A, Gordon D J, Krauss R M, Savage P J, Smith S C, Spertus Jr J A, Costa F. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement.  Curr Opin Cardiol. 2006;  21 1-6
  • 13 Eckel R H, Grundy S M, Zimmet P Z. The metabolic syndrome.  Lancet. 2005;  365 1415-1428
  • 14 Tsouli S G, Liberopoulos E N, Mikhailidis D P, Athyros V G, Elisaf M S. Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander?.  Metabolism. 2006;  55 1293-1301
  • 15 Isomaa B. A major health hazard: The metabolic syndrome.  Life Sci. 2003;  73 2395-2411
  • 16 Lakka H M, Laaksonen D E, Lakka T A, Niskanen K, Kumpusalo E, Tuomilehto J, Salonen J T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.  JAMA. 2002;  288 2709-2716
  • 17 Reaven G. Metabolic syndrome - Pathophysiology and implications for management of cardiovascular disease.  Circulation. 2002;  106 286-288
  • 18 Roche H M, Phillips C, Gibney M J. The metabolic syndrome: the crossroads of diet and genetics.  Proc Nutr Soc. 2005;  64 371-377
  • 19 Hanefeld M. Kardiovaskuläre Erkrankungen im Umfeld des Metabolischen Syndroms/Änderungen des Lebensstils sind das A und O.  Cardio Compact. 2004;  3 22-27
  • 20 Ford E S, Giles W H, Dietz W H. Prevalence of metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey.  JAMA. 2002;  287 356-359
  • 21 Bray G A, Nielsen S J, Popkin B M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.  Am J Clin Nutr. 2004;  79 537-543
  • 22 Gross L S, Li L, Ford E S, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment.  Am J Clin Nutr. 2004;  79 774-779
  • 23 Marx J. Unraveling the causes of diabetes.  Science. 2002;  296 686-689
  • 24 Havel P J. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism.  Nutr Rev. 2005;  63 133-157
  • 25 Dwyer J T, Evans M, Stone E J, Feldman H A, Lytle L, Hoelscher D, Johnson C, Zive M, Yang M. Child and Adolescent Trial for Cardiovascular Health (CATCH) Cooperative Research Group. Adolescents' eating patterns influence their nutrient intakes.  J Am Diet Assoc. 2001;  101 798-802
  • 26 Lambert J, Agostoni C, Elmadfa I, Hulshof K, Krause E, Livingstone B, Socha P, Pannemans D, Samartín S. Dietary intake and nutritional status of children and adolescents in Europe.  Br J Nutr. 2004;  92 S147-S211
  • 27 Barth C A. Die Bedeutung des Verzehrs von Mono- und Disacchariden in Getränken für die Entwicklung von Übergewicht und die Gesundheit.  Aktuel Ernaehr Med. 2006;  31, Suppl 1 S55-S60
  • 28 WHO .Joint FAO/WHO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases. Geneva; WHO Techn Rep Ser 916 2003
  • 29 Ludwig D S, Peterson K E, Gortmaker S L. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis.  Lancet. 2001;  357 505-508
  • 30 Schulze M B, Manson J A, Ludwig D S, Colditz G A, Stampfer M J, Willett W C, Hu F B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women.  JAMA. 2004;  292 927-934
  • 31 Teff K L, Elliott S S, Tschop M, Kieffer T J, Rader D, Heiman M, Townsend R R, Keim N L, D'Alessio D, Havel P J. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women.  J Clin Endocrinol Metab. 2004;  89 2963-2972
  • 32 Elliott S S, Keim N L, Stern J S, Teff K, Havel P J. Fructose, weigh gain, and the insulin resistancce syndrome.  Am J Clin Nutr. 2002;  76 911-922
  • 33 Malik V S, Schulze M B, Hu F B. Intake of sugar-sweetened beverages and weight gain: a systematic review.  Am J Clin Nutr. 2006;  84 274-288
  • 34 Wylie-Rosett J, Segal-Isaacson C J, Segal-Isaacson A. Carbohydrates and increases in obesity: does the type of carbohydrate make a difference?.  Obes Res. 2004;  12, Suppl 2 124S-129S
  • 35 Drewnowski A, Bellisle F. Liquid calories, sugar, and body weight.  Am J Clin Nutr. 2007;  85 651-661
  • 36 Basciano H, Frederico L, Adeli K. Fructose, insulin restance, and metabolic dyslipidemia.  Nutr Metab. 2005;  2 5
  • 37 Solyst J T, Michaelis 4th  O E, Reiser S, Ellwood K C, Prather E S. Effect of dietary sucrose in humans on blood uric acid, phosphorus, fructose, and lactic acid responses to a sucrose load.  Nutr Metab. 1980;  24 182-188
  • 38 Reiser S, Powell A S, Scholfield D J, Panda P, Ellwood K C, Canary J J. Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch.  Am J Clin Nutr. 1989;  49 832- 839
  • 39 Henry R R, Crapo P A, Thorburn A W. Current issues in fructose metabolism.  Annu Rev Nutr. 1991;  11 21-39
  • 40 Israel K D, Michaelis 4th  O E, Reiser S, Keeney M. Serum uric acid, inorganic phosphorus, and glutamic-oxalacetic transaminase and blood pressure in carbohydrate-sensitive adults consuming three different levels of sucrose.  Ann Nutr Metab. 1983;  27 425-435
  • 41 Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F. Fructose-induced hyperuricaemia.  Lancet. 1970;  2 (7686) 1310-1311
  • 42 Osei K, Falko J, Bossetti B M, Holland G C. Metabolic effects of fructose as a natural sweetener in the physiologic meals of ambulatory obese patients with type II diabetes.  Am J Med. 1987;  83 249-255
  • 43 Grigoresco C, Rizkalla S W, Halfon P, Bornet F, Fontvieille A M, Bros M, Dauchy F, Tchobroutsky G, Slama G. Lack of detectable deleterious effects on metabolic control of daily fructose ingestion for 2 mo in NIDDM patients.  Diabetes Care. 1988;  11 546-550
  • 44 Choi H K, Atkinson K, Karlson E W, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men.  N Engl J Med. 2004;  350 1093-1103
  • 45 Hallfrisch J. Metabolic effects of dietary fructose.  FASEB J. 1990;  4 2652-2660
  • 46 Bantle J P, Raatz S K, Thomas W, Georgopoulos A. Effects of dietary fructose on plasma lipids in healthy subjects.  Am J Clin Nutr. 2000;  72 1128-1134
  • 47 Faeh D, Minehira K, Schwarz J M, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men.  Diabetes. 2005;  54 1907-1913
  • 48 Kelley G L, Allan G, Azhar S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation.  Endocrinology. 2004;  145 548-555
  • 49 Bizeau M E, Pagliassotti M J. Hepatic adaptations to sucrose and fructose.  Metabolism. 2005;  54 1189-1201
  • 50 Ilan E, Tirosh O, Madar Z. Triacylglycerol-mediated oxidative stress inhibits nitric oxide production in rat isolated hepatocytes.  J Nutr. 2005;  135 2090-2095
  • 51 Marques-Lopes I, Ansorena D, Astiasaran I, Forga L, Martinez J A. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men.  Am J Clin Nutr. 2001;  73 253-261
  • 52 Fried S K, Rao S P. Sugars, hypertriglyceridemia, and cardiovascular disease.  Am J Clin Nutr. 2003;  78 873S-880S
  • 53 Aude Y, Mego P, Mehta J. Metabolic Syndrome: dietary interventions.  Curr Opin Cardiol. 2004;  19 473-479
  • 54 Hawley J, Houmard J. Introduction-preventing insulin resistance through exercise: a cellular approach.  Med Sci Sports Exerc. 2004;  36 1187-1190
  • 55 Krajcovicova-Kudlackova M, Sebekova K, Schinzel R, Klvanova J. Advanced glycation end products and nutrition.  Physiol Res. 2002;  51 313-316
  • 56 Busch M, Franke S, Müller A, Wolf M, Gerth J, Ott U, Niwa T, Stein G. Potential cardiovascular risk factors in chronic kidney disease: AGEs, total homocysteine and metabolites, and the C-reactive protein.  Kidney Int. 2004;  66 338-347
  • 57 Webster J, Wilke M, Stahl P, Kientsch-Engel R, Münch G. Maillardprodukte aus Lebensmitteln als proentzündliche und proarteriosklerotische Faktoren bei degenerativen Erkrankungen.  Z Gerontol Geriatr. 2005;  38 347-353
  • 58 Bourajjaj M, Stehouwer C D, van Hinsbergh V W, Schalkwijk C G. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus.  Biochem Soc Trans. 2003;  31 1400-1402
  • 59 Chuyen V N. Toxicity of the AGEs generated from the Maillard reaction: On the relationship of food-AGEs and biological-AGEs.  Mol Nutr Food Res. 2006;  50 1140-1149
  • 60 Wu L. Is methylglyoxal a causative factor for hypertension development?.  Can J Physiol Pharmacol. 2006;  84 129-139
  • 61 Horiuchi S, Unno Y, Usui H, Shikata K, Takaki K, Koito W, Sakamoto Y, Nagai R, Makino K, Sasao A, Wada J, Makino H. Pathological roles of advanced glycation end product receptors SR-A and CD36.  Ann NY Acad Sci. 2005;  1043 671-675
  • 62 Bierhaus A, Humpert P M, Morcos M, Wendt T, Chavakis T, Arnold B, Stern D M, Nawroth P P. Understanding RAGE, the receptor for advanced glycation end products.  J Mol Med. 2005;  83 876-886
  • 63 Schalkwijk C G, Stehouwer C D, van Hinsbergh V W. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification.  Diabetes Metab Res Rev. 2004;  20 369-382
  • 64 Sebekova K, Boor P, Valachovicova M, Blazicek P, Parrak V, Babinska K, Heidland A, Krajcovicova-Kudlackova M. Association of metabolic syndrome risk factors with selected markers of oxidative status and microinflammation in healthy omnivores and vegetarians.  Mol Nutr Food Res. 2006;  50 858-868
  • 65 Young J F, Nielsen S E, Haraldsdottir J, Daneshvar B, Lauridsen S T, Knuthsen P, Crozier A, Sandstrom B, Dragsted L O. Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status.  Am J Clin Nutr. 1999;  69 87-94
  • 66 Raij L. Hypertension, endothelium, and cardiovascular risk factors.  Am J Med. 1991;  90 13S-18S
  • 67 Rubanyi G M. Endothelium-derived relaxing and contracting factors.  J Cell Biochem. 1991;  46 27-36
  • 68 Susic D. Hypertension, aging, and atherosclerosis. The endothelial interface.  Med Clin North Am. 1997;  81 1231-1240
  • 69 Feron O, Kelly R A. The caveolar paradox: suppressing, inducing, and terminating eNOS signaling.  Circ Res. 2001;  88 129-131
  • 70 Igarashi J, Michel T. More sweetness than light? A search for the causes of diabetic vasculopathy.  J Clin Invest. 2001;  108 1425-1427
  • 71 Corry D B, Tuck M L. Uric acid and the vasculature.  Curr Hypertens Rep. 2006;  8 116-119
  • 72 Rösen P. Endotheliale Dysfunktion: ein Synonym für funktionelle Atherosklerose.  J Kardiol. 2002;  9 556-562
  • 73 Rösen P. Reaktive Sauerstoffspezies als Ursache der endothelialen Dysfunktion im Diabetes.  Aktuel Ernaehr Med. 2004;  29 11-18
  • 74 Poredos P. Enothelial dysfunction and cardiovascular disease.  Pathophysiol Haemost Thromb. 2002;  32 274-277
  • 75 Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review.  Diabetologia. 2001;  44 129-146
  • 76 Davies K J, Sevanian A, Muakkassah-Kelly S F, Hochstein P. Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid.  Biochem J. 1986;  235 747-754
  • 77 Santos C X, Anjos E I, Augusto O. Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation.  Arch Biochem Biophys. 1999;  372 285-294
  • 78 Hayden M R, Tyagi S C. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle.  Nutr Metab. 2004;  1 10
  • 79 Baldus S, Koster R, Chumley P, Heitzer T, Rudolph V, Ostad M A, Warnholtz A, Staude H J, Thuneke F, Koss K, Berger J, Meinertz T, Freeman B A, Munzel T. Oxypurinol improves coronary and peripheral endothelial function in patients with coronary artery disease.  Free Radic Biol Med. 2005;  39 1184-1190
  • 80 Bouloumié A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative stress in human endothelial cells.  FASEB J. 1999;  13 1231-1238
  • 81 Matsubara M, Chiba H, Maruoka S, Katayose S. Elevated serum leptin concentrations in women with hyperuricemia.  J Atheroscler Thromb. 2002;  9 28-34
  • 82 Kanellis J, Kang D-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease.  Semin Nephrol. 2005;  25 39-42
  • 83 Kanellis J, Watanabe S, Li J H, Kang D H, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan H Y, Feng L, Johnson R J. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2.  Hypertension. 2003;  41 1287-1293
  • 84 Kang D H, Han L, Ouyang X, Kahn A M, Kanellis J, Li P, Feng L, Nakagawa T, Watanabe S, Hosoyamada M, Endou H, Lipkowitz M, Abramson R, Mu W, Johnson R J. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter.  Am J Nephrol. 2005;  25 425-433
  • 85 Erdogan D, Gullu H, Caliskan M, Yildirim E, Bilgi M, Ulus T, Sezgin N, Muderrisoglu H. Relationship of serum uric acid to measures of endothelial function and atherosclerosis in healthy adults.  Int J Clin Pract. 2005;  59 1276-1282
  • 86 Johnson R J, Kang D H, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle K R, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?.  Hypertension. 2003;  41 1183-1190
  • 87 Ruggiero C, Cherubini A, Ble A, Bos A J, Maggio M, Dixit V D, Lauretani F, Bandinelli S, Senin U, Ferrucci L. Uric acid and inflammatory markers.  Eur Heart J. 2006;  27 1174-1181
  • 88 Clausen J O, Borch-Johnsen K, Ibsen H, Pedersen O. Analysis of the relationship between fasting serum uric acid and the insulin sensitivity index in a population-based sample of 380 young healthy Caucasians.  Eur J Endocrinol. 1998;  138 63-69
  • 89 Chen J, Wildman R P, Hamm L L, Muntner P, Reynolds K, Whelton P K, He J. Third National Health and Nutrition Examination Survey: Association between inflammation and insulin resistance in U. S. nondiabetic adults: results from the Third National Health and Nutrition Examination Survey.  Diabetes Care. 2004;  27 2960-2965
  • 90 Muscelli E, Natali A, Bianchi S, Bigazzi R, Galvan A Q, Sironi A M, Frascerra S, Ciociaro D, Ferrannini E. Effect of insulin on renal sodium and uric acid handling in essential hypertension.  Am J Hypertens. 1996;  9 746-752
  • 91 Cappuccio F P, Strazzullo P, Farinaro E, Trevisan M. Uric acid metabolism and tubular sodium handling. Results from a population-based study.  JAMA. 1993;  270 354-359
  • 92 Standl E. Metabolisches Syndrom und tödliches Quartett.  Internist. 1996;  37 698-704
  • 93 Schachter M. Uric acid and hypertension.  Curr Pharm Des. 2005;  11 4139-4143
  • 94 Garcia-Puig J, Ruilope L M, Luque M, Fernandez J, Ortega R, Dal-Re R. AVANT Study Group Investigators: Glucose metabolism in patients with essential hypertension.  Am J Med. 2006;  119 318-326
  • 95 Middeke M. Arterielle Hypertonie. Stuttgart, New York; Georg Thieme Verlag 2004
  • 96 Charkoudian N, Joyner M J, Sokolnicki L A, Johnson C, Eisenach J, Dietz N, Curry T, Wallin B G. Vascular adrenergic responsiveness is inversely related to tonic activity of sympathetic vasoconstrictor nerves in humans.  J Physiol. 2006;  572 821-827
  • 97 Valensi P. Hypertension, single sugars and fatty acids.  J Hum Hypertens. 2005;  19, Suppl 3 S5-S9
  • 98 Kang D H, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R, Johnson R J. A role for uric acid in the progression of renal disease.  J Am Soc Nephrol. 2002;  13 2888-2297
  • 99 Mazzali M, Kanellis J, Han L, Feng L, Xia Y Y, Chen Q, Kang D H, Gordon K L, Watanabe S, Nakagawa T, Lan H Y, Johnson R J. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism.  Am J Physiol Renal Physiol. 2002;  282 F991-F997
  • 100 Mazzali M, Hughes J, Kim Y G, Jefferson J A, Kang D H, Gordon K L, Lan H Y, Kivlighn S, Johnson R J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism.  Hypertension. 2001;  38 1101-1106
  • 101 Feig D I, Johnson R J. The role of uric acid in pediatric hypertension.  J Ren Nutr. 2007;  17 79-83
  • 102 Kummer H. Hyperurikämie: abklären, vergessen, behandeln?.  Schweiz Med Wschr. 1986;  116 791-801
  • 103 Johnson R J, Feig D I, Herrera-Acosta J, Kang D-H. Resurrection of uric acid as a causal risk factor in essential hypertension.  Hypertension. 2005;  45 18-20
  • 104 Johnson R J, Rideout B A. Uric acid and diet - Insights into the epidemic of cardiovascular disease.  N Engl J Med. 2004;  350 1071-1073
  • 105 Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck M L. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation.  Hypertension. 2003;  42 474-480
  • 106 Alper Jr A B, Chen W, Yau L, Srinivasan S R, Berenson G S, Hamm L L. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study.  Hypertension. 2005;  45 34-38
  • 107 Fang J, Alderman M H. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971 - 1992. National Health and Nutrition Examination Survey.  JAMA. 2000;  283 2404-2410
  • 108 Invitti C, Maffeis C, Gilardini L, Pontiggia B, Mazzilli G, Girola A, Sartorio A, Morabito F, Viberti G C. Metabolic syndrome in obese Caucasian children: prevalence using WHO-derived criteria and association with nontraditional cardiovascular risk factors.  Int J Obes. 2006;  30 627-633
  • 109 Ishizaka N, Ishizaka Y, Toda E, Nagai R, Yamakado M. Association between serum uric acid, metabolic syndrome, and carotid atherosclerosis in Japanese individuals.  Arterioscler Thromb Vasc Biol. 2005;  25 1038-1044
  • 110 Jee S H, Lee S Y, Kim M T. Serum uric acid and risk of death from cancer, cardiovascular disease or all causes in men.  Eur J Cardiovasc Prev Rehabil. 2004;  11 185-191
  • 111 Kawamoto R, Tomita H, Oka Y, Ohtsuka N. Relationship between serum uric acid concentration, metabolic syndrome and carotid atherosclerosis.  Inter Med. 2006;  45 605-614
  • 112 Liese A D, Hense H W, Lowel H, Doring A, Tietze M, Keil U. Association of serum uric acid with all-cause and cardiovascular disease mortality and incident myocardial infarction in the MONICA Augsburg cohort. World Health Organization Monitoring Trends and Determinants in Cardiovascular Diseases.  Epidemiology. 1999;  10 391-397
  • 113 Lohsoonthorn V, Dhanamun B, Williams M A. Prevalence of hyperuricemia and its relationship with metabolic syndrome in Thai adults receiving annual health exams.  Arch Med Res. 2006;  37 883-889
  • 114 Niskanen L K, Laaksonen D E, Nyyssonen K, Alfthan G, Lakka H M, Lakka T A, Salonen J T. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study.  Arch Intern Med. 2004;  164 1546-1551
  • 115 Sakata K, Hashimoto T, Ueshima H, Okayama A. Absence of an association between serum uric acid and mortality from cardiovascular disease: NIPPON DATA 80, 1980 - 1994. National Integrated Projects for Prospective Observation of Non-communicable Diseases and its Trend in the Aged.  Eur J Epidemiol. 2001;  17 461-468
  • 116 Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study.  Hypertension. 2000;  36 1072-1078
  • 117 Viazzi F, Parodi D, Leoncini G, Parodi A, Falqui V, Ratto E, Vettoretti S, Bezante G P, Del Sette M, Deferrari G, Pontremoli R. Serum uric acid and target organ damage in primary hypertension.  Hypertension. 2005;  45 991-996
  • 118 Wylenzek M. Zusammenhang zwischen somatischen Risikofaktoren und Mortalität in der Hessenstudie; ist ein erhöhter Serumharnsäurespiegel ein eigenständiger Risikofaktor? Dissertation. Berlin; FU Berlin 1981: 1-59
  • 119 Culleton B F, Larson M G, Kannel W B, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study.  Ann Intern Med. 1999;  131 7-13
  • 120 Conen D, Wietlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, Burnier M. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country.  BMC Public Health. 2004;  4 9
  • 121 Yoo T W, Sung K C, Shin H S, Kim B J, Kim B S, Kang J H, Lee M H, Park J R, Kim H, Rhee E J, Lee W Y, Kim S W, Ryu S H, Keum D G. Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome.  Circ J. 2005;  69 928-933
  • 122 Choi H K, Ford E S. Prevalence of the metabolic syndrome in individuals with hyperuricemia.  Am J Med. 2007;  120 442-447
  • 123 Nagahama K, Inoue T, Iseki K, Touma T, Kinjo K, Ohya Y, Takishita S. Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa.  Japan Hypertens Res. 2004;  27 835-841
  • 124 Sundstrom J, Sullivan L, D'Agostino R B, Levy D, Kannel W B, Vasan R S. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence.  Hypertension. 2005;  45 28-33
  • 125 Perlstein T S, Gumieniak O, Williams G H, Sparrow D, Vokonas P S, Gaziano M, Weiss S T, Litonjua A A. Uric acid and the development of hypertension: the normative aging study.  Hypertension. 2006;  48 1031-1036
  • 126 Shankar A, Klein R, Klein B E, Nieto F J. The association between serum uric acid level and long-term incidence of hypertension: Population-based cohort study.  J Hum Hypertens. 2006;  20 937-945
  • 127 Wannamthee S G. Serum uric acid and risk of coronary heart disease.  Curr Pharm Des. 2005;  11 4125-4132
  • 128 de Simone G, Devereux R B, Chinali M, Roman M J, Best L G, Welty T K, Lee E T, Howard B V. Strong Heart Study Investigators: Risk factors for arterial hypertension in adults with initial optimal blood pressure: the Strong Heart Study.  Hypertension. 2006;  47 162-167
  • 129 Krishnan E, Kwoh C K, Schumacher H R, Kuller L. Hyperuricemia and incidence of hypertension among men without metabolic syndrome.  Hypertension. 2007;  49 298-303
  • 130 Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt D V, Reaveley D A, Schuler G, Coats A J, Anker S D, Hambrecht R. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies.  Circulation. 2002;  105 2619-2624
  • 131 Butler R, Morris A D, Belch J J, Hill A, Struthers A D. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension.  Hypertension. 2000;  35 746-751
  • 132 Hoieggen A, Alderman M H, Kjeldsen S E, Julius S, Devereux R B, De Faire U, Fyhrquist F, Ibsen H, Kristianson K, Lederballe-Pedersen O, Lindholm L H, Nieminen M S, Omvik P, Oparil S, Wedel H, Chen C, Dahlof B. The impact of serum uric acid on cardiovascular outcomes in the LIFE study.  Kidney Int. 2004;  65 1041-1049
  • 133 Alderman M, Aiyer K J. Uric acid: role in cardiovascular disease and effects of losartan.  Curr Med Res Opin. 2004;  20 369-379
  • 134 Daskalopoulou S S, Tzovaras V, Mikhailidis D P, Elisaf M. Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia.  Curr Pharm Des. 2005;  11 4161-4175
  • 135 Hepburn A L, Kaye S A, Feher M D. Long-term remission from gout associated with fenofibrate therapy.  Clin Rheumatol. 2003;  22 73-76
  • 136 Srinivas T R, Herrera-Acosta J, Feig D I, Kang D H, Segal M S, Johnson R J. Diuretic-induced hyperuricemia does not decrease cardiovascular risk.  J Hypertens. 2004;  22 1415-1417
  • 137 Alexander B T. Fetal programming of hypertension.  Am J Physiol Regul Integr Comp Physiol. 2006;  290 R1-R10
  • 138 Brennan K A, Olson D M, Symonds M E. Maternal nutrient restriction alters renal development and blood pressure regulation of the offspring.  Proc Nutr Soc. 2006;  65 1116-1124
  • 139 Zandi-Nejad K, Luyckx V A, Brenner B M. Adult hypertension and kidney disease: the role of fetal programming.  Hypertension. 2006;  47 502-508
  • 140 Brenner B M, Garcia D L, Anderson S. Glomeruli and blood pressure. Less of one, more the other?.  Am J Hypertens. 1988;  1 335-347
  • 141 Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension.  N Engl J Med. 2003;  348 101-108
  • 142 Luyckx V A, Brenner B M. Low birth weight, nephron number, and kidney disease.  Kidney Int Suppl. 2005;  97 S68-S77
  • 143 Hughson M, Farris 3rd  A B, Douglas-Denton R, Hoy W E, Bertram J F. Glomerular number and size in autopsy kidneys: the relationship to birth weight.  Kidney Int. 2003;  63 2113-2122
  • 144 Hughson M D, Douglas-Denton R, Bertram J F, Hoy W E. Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States.  Kidney Int. 2006;  69 671-678
  • 145 Hales C N, Ozanne S E. The dangerous road to catch-up growth.  J Physiol. 2003;  547 5-10
  • 146 Barker D J, Hales C N, Fall C H, Osmond C, Phipps K, Clark P M. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth.  Diabetologia. 1993;  36 62-67
  • 147 Huxley R R, Shiell A W, Law C M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature.  J Hypertens. 2000;  18 815-831

Dir. Prof. Dr. Rolf Großklaus

Bundesinstitut für Risikobewertung

Thielallee 88 - 92

14195 Berlin

Phone: + 49 (30) 8412 3230

Fax: + 49 (30) 8412 3715

Email: Rolf.Grossklaus@bfr.bund.de

    >