Subscribe to RSS
DOI: 10.1055/s-2007-977432
CAN-Catalyzed Vinylogous Povarov Reactions: The First Three-Component Synthesis of 2-Functionalized Tetrahydroquinolines from Anilines, Cinnamaldehyde and Vinyl Ethers
Publication History
Publication Date:
13 April 2007 (online)

Abstract
The CAN-catalyzed reaction between anilines, cinnamaldehyde and vinyl ethers affords 2-styryl-1,2,3,4-tetrahydroquinolines. In the case of noncyclic vinyl ethers, these reactions are completely stereoselective and furnish exclusively the diastereomer with a cis relationship between the styryl and alkoxy groups.
Key words
cycloadditions - multicomponent reactions - stereoselective synthesis - Lewis acids - quinolines
- See, for instance:
-
1a
Celing RW.Leeson PD.Moseley AM.Baker R.Foster AC.Grimwood S.Kemp JA.Marshall GR. J. Med. Chem. 1992, 35: 1942 -
1b
Carling RW.Leeson PD.Moseley AM.Smith JD.Saywell K.Trickelbank MD.Kemp JA.Marshall GR.Foster AC.Grimwood S. Bioorg. Med. Chem. Lett. 1993, 3: 65 -
1c
Paris D.Cottin M.Demonchaux P.Augert G.Dupassieux P.Lenoir P.Peck MJ.Jasserand D. J. Med. Chem. 1995, 38: 669 -
1d
Hanada K,Furuya K,Inoguchi K,Miyakawa M, andNagata N. inventors; WO 0127086. ; Chem. Abstr. 2001, 134, 295752 -
2a
Omura S.Nakagawa A.Hashimoto H.Oiwa R.Iwai Y.Hirano A.Shibukawa N.Kojima Y. J. Antibiot. 1980, 33: 1395 -
2b
Nakagawa A.Iwai Y.Hashimoto H.Miyazaki N.Oiwa R.Takahashi Y.Hirano A.Shibukawa N.Kojima Y.Omura S. J. Antibiot. 1981, 34: 1408 - 3
Copp BR.Fulton KF.Perry NB.Blunt JW.Munro MHG. J. Org. Chem. 1994, 59: 8233 - 4 For a review of the chemistry of the martinellines, see:
Nyerges M. Heterocycles 2004, 63: 1685 - 5 For a general review of imino Diels-Alder reactions, see:
Buonora P.Olsen J.-C.Oh T. Tetrahedron 2001, 57: 6099 - 6 For a review of synthetic approaches to 1,2,3,4-tetrahydroquinolines, see:
Katritzky AR.Rachwal S.Rachwal B. Tetrahedron 1996, 48: 15031 - 7
Povarov LS. Russ. Chem. Rev. 1967, 36: 656 - 8
Kobayashi S.Ishitani H.Nakagawa S. Synthesis 1995, 1195 - For some representative examples of recent work in this area, see:
-
9a
Nagaiah K.Sreenu D.Srinivasa Rao R.Vashishta G.Yadav JS. Tetrahedron Lett. 2006, 47: 4409 -
9b
Srinivas KVNS.Das W. Synlett 2004, 1715 -
9c
Yadav JS.Reddy BVS.Reddy JSS.Srinivasa Rao S. Tetrahedron 2003, 59: 1599 -
9d
Kumar RS.Nagarajan R.Chitra S.Perumal PT. Tetrahedron 2001, 57: 3419 -
9e
Sundararajan G.Prabagaran N.Varghese B. Org. Lett. 2001, 3: 1973 -
9f
Crousse B.Bégué JP.Bonnet-Delpon D. J. Org. Chem. 2000, 65: 5009 -
10a
Hermitage S.Howard JAK.Prichard DJRG.Probert MR.Whiting A. Org. Biomol. Chem. 2004, 2: 2451 -
10b
Alves MJ.Azoia NA.Gil-Fortes A. Tetrahedron 2007, 63: 727 -
11a
Hadden M.Nieuwenhuytzen M.Osborne D.Stevenson PJ.Thompson N. Tetrahedron Lett. 2001, 42: 6417 -
11b
Cia C.Heng L.Ma D. Tetrahedron Lett. 2002, 43: 9405 -
11c
Hadden M.Nieuwenhuyzen M.Osborne D.Stevenson PJ.Thompson N.Walker AD. Tetrahedron 2006, 62: 3977 - 12
Zhang W.Guo Y.Liu Z.Jin X.Yang L.Liu Z.-L. Tetrahedron 2005, 61: 1325 -
13a
For a review, see ref. 5. For some [4+2] cycloadditions of α,β-unsaturated imines leading to 1,4-dihydropyridines, see:
-
13b
Barluenga J.Tomás M.López-Pelegrín JA.Rubio E. Tetrahedron Lett. 1997, 38: 3981 -
13c
Ishar MPS.Kumar K.Kaur S.Kumar S.Girdhar NK.Sachar S.Markawa A.Kapoor A. Org. Lett. 2001, 3: 2133 -
14a
Shimizu M.Kurokawa H.Takahashi A. Lett. Org. Chem. 2004, 1: 353 -
14b
Akiyama A.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 -
14c
Shimizu M.Kamiya M.Hachiya M. Chem. Lett. 2003, 32: 606 -
14d
Shimizu M.Ogawaand T.Nishi T. Tetrahedron Lett. 2001, 42: 5463 - 15
Shimizu M.Itohara S.Hase E. Chem. Commun. 2001, 2318 - 16
Onaka M.Ohno R.Yanagiya N.Izumi Y. Synlett 1993, 141 - For selected reviews and monographs on multicomponent reactions, see:
-
18a
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
18b
Bienaymé H.Hulme C.Oddon G.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
18c
Ugi A. Pure Appl. Chem. 2001, 73: 187 -
18d
Ugi A. Molecules 2003, 8: 53 -
18e
Orru RVA.de Greef M. Synthesis 2003, 1471 -
18f
Zhu J. Eur. J. Org. Chem. 2003, 1133 -
18g
Ramón DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602 -
18h
Multicomponent Reactions
Zhu J.Bienaymé H. Wiley-VCH; Weinheim: 2005. -
18i
Dömling A. Chem. Rev. 2007, 107: 89 -
18j
for a symposium in print on this topic, see: Marek, I., Ed. Tetrahedron 2005, 67, 11299
- Some reviews on CAN-promoted synthetic transformations:
-
19a
Nair V.Matthew J.Prabhakaran J. Chem. Soc. Rev. 1997, 127 -
19b
Hwu JR.King K.-Y. Curr. Sci. 2001, 81: 1043 -
19c
Nair V.Panicker SB.Nair LG.George TG.Augustine A. Synlett 2003, 156 -
19d
Nair V.Balagopal L.Rajan R.Mathew J. Acc. Chem. Res. 2004, 37: 21 -
19e
Dhakshinamoorty A. Synlett 2005, 3014 ; Spotlight 143 - Some other CAN-catalyzed reactions have been described very recently. For selected examples, see:
-
20a
Zeng X.-F.Ji S.-J.Wang SY. Tetrahedron 2005, 10235 -
20b
Wang SY.Ji S.-J. Tetrahedron 2006, 62: 1527 -
20c
Savitha G.Perumal PT. Tetrahedron Lett. 2006, 47: 3589 -
20d
Nair V.Mohanan K.Suja TD.Suresh E. Tetrahedron Lett. 2006, 47: 705 -
20e
Varala R.Enugala R.Nuvula S.Adapa SR. Synlett 2006, 1009 -
20f
Varala R.Sreelatha N.Adapa SR. Synlett 2006, 1549 -
20g
Ko S.Yao CF. Tetrahedron 2006, 62: 7293 -
20h
Sridharan V.Avendaño C.Menéndez JC. Tetrahedron 2007, 63: 673 - 21
Shanmugam P.Perumal PT. Tetrahedron 2006, 62: 9726 - 22
Markó IE.Ates A.Gautier A.Leroy B.Plancher J.-M.Quesnel Y.Vanherck J.-C. Angew. Chem. Int. Ed. 1999, 12: 2653
References and Notes
Representative Procedure
An equimolecular (3 mmol) mixture of aniline and cinnamaldehyde was dissolved in MeCN (20 mL). To this stirred solution, ethyl vinyl ether (4.5 mmol) and 5 mol% of CAN were added, and stirring was continued for 3 h. After completion of the reaction, as indicated by TLC (2 h reaction time), the mixture was poured into H2O (20 mL) and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were dried over anhyd Na2SO4 and evaporated, and the residue was purified by silica gel column chromatography using a PE-EtOAc mixture (96:4), to afford 60% of a mixture of compounds 4a and 5a in 57:43 ratio, as determined by 1H NMR analysis. Analytical samples of compounds 4a and 5a were obtained through a second column chromatography.
Data for 4a: viscous oil. IR (neat) 3327.2, 3024.0, 2875.2, 1609.3, 1484.2, 1364.6, 1259.6, 1063.4 cm-1. 1H NMR (250 MHz, CDCl3): δ = 2.03-2.22 (m, 2 H), 2.73-2.84 (m, 1 H), 3.82-3.88 (m, 3 H), 4.19 (dd, J = 7.8, 3.5 Hz, 1 H), 5.13 (d, J = 7.3 Hz, 1 H), 6.35 (dd, J = 15.8, 7.8 Hz, 1 H), 6.61-6.71 (m, 2 H), 6.85 (td, J = 7.5, 0.9 Hz, 1 H), 7.14 (td, J = 7.5, 0.9 Hz, 1 H), 7.27-7.47 (m, 6 H). 13C NMR (62.9 MHz, CDCl3): δ = 26.1, 43.1, 56.2, 66.9, 75.9, 115.4, 119.4, 122.3, 126.9, 128.3, 129.0, 129.2, 130.2, 130.8, 131.8, 137.1, 144.7. Anal. Calcd for C19H19NO: C, 82.28; H, 6.90; N, 5.05. Found: C, 82.03; H, 6.65; N, 4.89.
Data for 5a: viscous oil. IR (neat): 3333.8, 3024.6, 2861.3, 1611.3, 1482.8, 1363.1, 1264.0, 1127.0, 1042.2 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.91-2.01 (m, 1 H), 2.20-2.35 (m, 2 H), 3.48 (dd, J = 9.7, 8.9 Hz, 1 H), 3.84-3.94 (m, 1 H), 4.01-4.11 (m, 2 H), 4.64 (d, J = 4.8 Hz, 1 H), 6.24 (dd, J = 15.8, 8.5 Hz, 1 H), 6.67-6.73 (m, 2 H), 6.84 (td, J = 7.4, 0.8 Hz, 1 H), 7.17 (td, J = 7.4, 0.8 Hz, 1 H), 7.28-7.49 (m, 6 H). 13C NMR (62.9 MHz, CDCl3): δ = 29.4, 41.9, 56.3, 65.7, 76.2, 115.4, 118.9, 120.6, 127.0, 128.5, 129.2, 129.5, 130.2, 131.7, 133.9, 136.8, 145.2. Anal. Calcd for C19H19NO: C, 82.28; H, 6.90; N, 5.05. Found: C, 81.97; H, 6.78; N, 4.89.