Abstract
A mild and efficient method for the monocarboxymethylation of primary amines that
takes place under aqueous conditions at room temperature is described. Treatment of
an aqueous solution of a variety of primary amines with two equivalents of glyoxylic
acid leads to the N -formyl glycine derivatives. Direct hydrolysis of the crude reaction solution leads
to the products of amine monocarboxymethylation in good to excellent yield.
Key words
metal-free synthesis - amino acids - glycine derivatives
References and Notes
For recent reviews, see:
<A NAME="RD02207ST-1A">1a </A>
Rajesh BM.
Iqbal J.
Curr. Pharm. Biotech.
2006,
7:
247
<A NAME="RD02207ST-1B">1b </A>
Gentilucci L.
Tolomelli A.
Squassabia F.
Curr. Med. Chem.
2006,
13:
2449
For examples, see:
<A NAME="RD02207ST-2A">2a </A>
Jungermann E.
Gerecht JF.
Krems IJ.
J. Am. Chem. Soc.
1956,
78:
172
<A NAME="RD02207ST-2B">2b </A>
Kurkin AV.
Golantsov NE.
Karchava AV.
Yurovskaya MA.
Chem. Heterocycl. Compd. (Engl. Transl.)
2003,
39:
74
<A NAME="RD02207ST-3A">3a </A>
Evans G.
Platts JA.
Tomkinson NCO.
Org. Biomol. Chem.
2006,
4:
2616
<A NAME="RD02207ST-3B">3b </A>
Cavill JL.
Elliott RL.
Evans G.
Jones IL.
Platts JA.
Ruda AM.
Tomkinson NCO.
Tetrahedron
2006,
62:
410
<A NAME="RD02207ST-3C">3c </A>
Gibbs TJK.
Tomkinson NCO.
Org. Biomol. Chem.
2005,
3:
4043
<A NAME="RD02207ST-3D">3d </A>
Cavill JL.
Peters J.-E.
Tomkinson NCO.
Chem. Commun.
2003,
728
<A NAME="RD02207ST-4">4 </A> These conditions were derived from a report by Jørgensen for the formation of
4-benzyl-1-methylimidazolidine-2-carboxylic acid from the reaction of glyoxylic acid
and N -methyl-3-phenylpropane-1,2-diamine. See:
Halland N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
8331
<A NAME="RD02207ST-5">5 </A>
Kihlberg J.
Bergman R.
Wickberg B.
Acta Chem. Scand. Ser. B
1983,
37:
911
<A NAME="RD02207ST-6">6 </A>
All compounds prepared were characterised by mp, 1 H NMR, 13 C NMR, IR, MS and HRMS.
<A NAME="RD02207ST-7A">7a </A>
Ram S.
Ehrenkaufer RE.
Synthesis
1988,
91
<A NAME="RD02207ST-7B">7b </A>
Leuckart R.
Ber. Dtsch. Chem. Ges.
1885,
18:
2341
<A NAME="RD02207ST-7C">7c </A>
Wallach O.
Ber. Dtsch. Chem. Ges.
1891,
24:
3992
<A NAME="RD02207ST-8">8 </A>
Hoefnagel AJ.
Van Bekkum H.
Peters JA.
J. Org. Chem.
1992,
57:
3916
<A NAME="RD02207ST-9">9 </A>
Grieco PA.
Larson SD.
Fobare WF.
Tetrahedron Lett.
1986,
27:
1975
<A NAME="RD02207ST-10">10 </A>
Coghlan PA.
Easton CJ.
J. Chem. Soc., Perkin Trans. 1
1999,
2659
<A NAME="RD02207ST-11">11 </A>
Maryanoff BE.
Zhang H.-C.
Cohen JH.
Turchi IJ.
Maryanoff CA.
Chem. Rev.
2004,
104:
1431
<A NAME="RD02207ST-12">12 </A> For a typical example, see:
Chambers MS.
Street LJ.
Goodacre S.
Hobbs SC.
Hunt P.
Jelley RA.
Matassa VG.
Reeve AJ.
Sternfeld F.
Beer MS.
Stanton JA.
Rathbone D.
Watt AP.
MacLeod AM.
J. Med. Chem.
1999,
42:
691
<A NAME="RD02207ST-13">13 </A>
Bialy L.
Díaz-Mochón JJ.
Specker E.
Keinicke L.
Bradley M.
Tetrahedron
2005,
61:
8295
<A NAME="RD02207ST-14">14 </A>
Heimer EP.
Gallo-Torres HE.
Felix AM.
Ahmad M.
Lambros TJ.
Scheidl F.
Meienhofer J.
Int. J. Pept. Protein Res.
1984,
23:
203