Abstract
A simple and efficient synthesis of a series of bidentate diborylxanthene derivatives
is described.
Key words
boron - cross-coupling - Lewis acids -
ipso -substitution - xanthene
References
<A NAME="RF19107SS-1">1 </A>
Lewis Acids in Organic Synthesis
Yamamoto H.
Wiley-VCH;
Weinheim:
2000.
<A NAME="RF19107SS-2">2 </A>
Schriver DF.
Biallas MJ.
J. Am. Chem. Soc.
1967,
89:
1078
<A NAME="RF19107SS-3A">3a </A>
Katz HE.
J. Org. Chem.
1985,
50:
5027
<A NAME="RF19107SS-3B">3b </A>
Katz HE.
J. Am. Chem. Soc.
1985,
107:
1420
<A NAME="RF19107SS-3C">3c </A>
Katz HE.
Organometallics
1987,
6:
1134
<A NAME="RF19107SS-4">4 </A>
Wang H.
Gabbaï FP.
Organometallics
2005,
24:
2898
<A NAME="RF19107SS-5">5 </A>
Katz HE.
J. Org. Chem.
1989,
54:
2179
<A NAME="RF19107SS-6">6 </A>
Okamura R.
Wada T.
Aikawa K.
Nagata T.
Tanaka K.
Inorg. Chem.
2004,
43:
7210
<A NAME="RF19107SS-7">7 </A>
Hirotsu M.
Ohno N.
Nakajima T.
Ueno K.
Chem. Lett.
2005,
34:
848
<A NAME="RF19107SS-8">8 </A>
Tobita H.
Hasegawa K.
Minglana JJG.
Luh LS.
Okazaki M.
Ogino H.
Organometallics
1999,
18:
2058
<A NAME="RF19107SS-9A">9a </A>
Deck PA.
Beswick CL.
Marks TJ.
J. Am. Chem. Soc.
1998,
120:
1772
<A NAME="RF19107SS-9B">9b </A>
Qin Y.
Cheng G.
Sandararaman A.
Jäkle F.
J. Am. Chem. Soc.
2002,
124:
12672
<A NAME="RF19107SS-9C">9c </A>
Zhao Z.
Snieckus V.
Org. Lett.
2005,
7:
2523
<A NAME="RF19107SS-10">10 </A>
McWilliams K.
Kelly JW.
J. Org. Chem.
1996,
61:
7408
<A NAME="RF19107SS-11">11 </A>
Sharp MJ.
Cheng W.
Snieckus V.
Tetrahedron Lett.
1987,
28:
5093
<A NAME="RF19107SS-12A">12a </A>
Fujita M.
Obayashi M.
Hiyama T.
Tetrahedron
1988,
44:
4135
<A NAME="RF19107SS-12B">12b </A>
Ishihara K.
Hasegawa A.
Yamamoto H.
Angew. Chem. Int. Ed.
2001,
40:
4077
<A NAME="RF19107SS-13">13 </A> The synthesis of a Brønsted acid with a similar framework has been previously
reported, see:
Hasegawa A.
Ishikawa T.
Ishihara K.
Yamamoto H.
Bull. Chem. Soc. Jpn.
2005,
78:
1401
<A NAME="RF19107SS-14A">14a </A>
Frohn H.-J.
Lewin A.
Bardin VV.
J. Organomet. Chem.
1998,
570:
255
<A NAME="RF19107SS-14B">14b </A>
Bardin VV.
Pressman LS.
Furin GG.
J. Fluorine Chem.
1991,
53:
213
<A NAME="RF19107SS-14C">14c </A>
Fild M.
Glemser O.
Christoph B.
Angew. Chem., Int. Ed. Engl.
1964,
3:
801
<A NAME="RF19107SS-15">15 </A> Since the silicon-boron exchange reaction did not take place on silylpolyfluoroarenes,
the use of the stannylpolyfluoro-arene was essential. See:
Frohn H.-J.
Franke H.
Fritzen P.
Bardin VV.
J. Organomet. Chem.
2000,
598:
127
<A NAME="RF19107SS-16">16 </A> We chose the trimethylstannyl group instead of the more common tributylstannyl
group as the substituent, since the removal of the organotin derivatives, which were
formed by the borylation reaction, could be easily achieved by sublimation. See:
Britovsek GJP.
Ugolotti J.
White AJP.
Organometallics
2005,
24:
1685
<A NAME="RF19107SS-17">17 </A> The boronic acid 3a was also prepared in 35% yield by the lithiation (n -BuLi) of 10 , the reaction of the aryllithium with B(OMe)3 and the hydrolysis of the aryltrimethoxyborate. See:
Frohn H.
Adnin NY.
Bardin VV.
Starichenko VF.
Z. Anorg. Allg. Chem.
2002,
628:
2827 ; the solubility of 3a , however, was very low in common organic solvents and it was necessary to use a large
amount of CH2 Cl2 (˜900 mL for 1 mmol scale) to extract 3a from the reaction mixture
<A NAME="RF19107SS-18">18 </A>
The reaction of lithiated 10 with Β -bromocatecholborane gave 3b in low yield (10%).
<A NAME="RF19107SS-19">19 </A>
Nowick JS.
Ballester P.
Ebmeyer F.
Rebek J.
J. Am. Chem. Soc.
1990,
112:
8902
<A NAME="RF19107SS-20">20 </A>
Itami K.
Terakawa K.
Yoshida J.
Kajimoto O.
J. Am. Chem. Soc.
2003,
125:
6058
<A NAME="RF19107SS-21">21 </A>
Coulson DR.
Inorg. Synth.
1972,
13:
121
<A NAME="RF19107SS-22A">22a </A>
Frohn H.-J.
Lewin A.
Bardin VV.
J. Organomet. Chem.
1998,
570:
255
<A NAME="RF19107SS-22B">22b </A>
Bardin VV.
Pressman LS.
Furin GG.
J. Fluorine Chem.
1991,
53:
213
<A NAME="RF19107SS-22C">22c </A>
Fild M.
Glemser O.
Christoph B.
Angew. Chem., Int. Ed. Engl.
1964,
3:
801
<A NAME="RF19107SS-23">23 </A>
Fearon FWG.
Gilman H.
J. Organomet. Chem.
1967,
10:
409
<A NAME="RF19107SS-24">24 </A>
The 11 B NMR chemical shifts of 1c , 2c and 3c were not observed, probably because the signals were too broad.
<A NAME="RF19107SS-25">25 </A>
It is not adequate to discuss the Lewis acidity by the values of 11 B NMR chemical shifts. See ref. 16.