Planta Med 2008; 74(2): 188-193
DOI: 10.1055/s-2008-1034276
Physiology and Biotechnology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Tissue Specificity and Developmental Pattern of Amorpha-4,11-diene Synthase (ADS) Proved by ADS Promoter-Driven GUS Expression in the Heterologous Plant, Arabidopsis thaliana

Soon-Hee Kim1 , Yung-Jin Chang1 , Soo-Un Kim1 , 2
  • 1Program in Applied Life Chemistry, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
  • 2Plant Metabolism Research Center, Kyung Hee University, Yongin, Korea
Weitere Informationen

Publikationsverlauf

Received: April 12, 2007 Revised: October 9, 2007

Accepted: December 4, 2007

Publikationsdatum:
17. Januar 2008 (online)

Abstract

Amorpha-4,11-diene synthase (ADS) of Artemisia annua L. is a sesquiterpene cyclase that catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene in the biosynthesis of the antimalarial artemisinin. To explore the mechanisms regulating the tissue-specific and developmental distributions of ADS, a full ADS promoter was generated using PCR, and fused to GUS for introduction into Arabidopsis thaliana. ADSpro::GUS fusion transcripts were organ-specific, mainly present in the anthers and trichomes of the green tissues of the juvenile leaves. This result was consistent with the ADS transcription pattern observed in A. annua as examined by RT-PCR. To determine the subcellular localization of ADS, an open reading frame (ORF) of ADS was fused to the green fluorescent protein (smGFP) gene and introduced into the A. thaliana protoplasts. GFP fluorescence was located exclusively in the cytosol, an indication that ADS is a cytosol-localized protein.

Abbreviations

ADS:amorpha-4,11-diene synthase

ADSpro:amorpha-4,11-diene synthase promoter

MS medium:Murashige and Skoog medium

ORF:open reading frame

PCR:polymerase chain reaction

RACE:rapid amplification of cDNA ends

PLM-RACE:RNA ligase mediated RACE

RT-PCR:reverse transcriptase-PCR

TAIL-PCR:thermal asymmetric interlaced-PCR

References

  • 1 Chappell J. The biochemistry and molecular biology of isoprenoid metabolism.  Plant Physiol. 1995;  107 1-6
  • 2 Mahmoud S S, Croteau R B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants.  Trends Plant Sci. 2002;  7 366-73
  • 3 Pichersky E, Gershenzon J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense.  Curr Opin Plant Biol. 2002;  5 237-43
  • 4 Aharoni A, Giri A P, Deuerlein S, Griepink F, De Kogel W J, Verstappen F WA. et al . Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.  Plant Cell. 2003;  15 2866-84
  • 5 Galal A M, Ross S A, Jacob M, Elsohly M A. Antifungal activity of artemisinin derivatives.  J Nat Prod. 2005;  68 1274-6
  • 6 Chen P K, Leather G R. Plant growth regulatory activities of artemisinin and its related compounds.  J Chem Ecol. 1990;  16 1867-76
  • 7 Klayman D L. Qinghaosu (artemisinin): an antimalarial drug from China.  Science. 1985;  228 1049-55
  • 8 Ferreira J FS, Janick J. Distribution of artemisinin in Artemisia annua. In: Janick J, editor. Progress in new crops.  Arlington: ASHS. Press;  1996 578-84
  • 9 Xudong Y, Salim A B, Andreas K, Jing Z, Paola L, Peter B. et al . Engineering the provitamin A (γ-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm.  Science. 2000;  287 303-5
  • 10 Kappers I F, Aharoni A, van Herpen T WJM, Luckerhoff L LP, Dicke M, Bouwmeester H J. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. .  Science. 2005;  309 2070-2
  • 11 Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-¥ä-cadinene synthase-A.  Plant Physiol. 2004;  135 507-15
  • 12 Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers.  Plant J. 2005;  42 57-71
  • 13 Bouwmeester H J, Wallaart T E, Janssen M HA, van Loo B, Jansen B JM, Posthumus M A. et al . Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis.  Phytochemistry. 1999;  52 843-54
  • 14 Chang Y -J, Song S -H, Park S -H, Kim S -U. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis.  Arch Biochem Biophys. 2000;  383 178-84
  • 15 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture.  Physiol Plant. 1962;  15 473-97
  • 16 Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea).  Mol Gen Genet. 2000;  263 554-60
  • 17 Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual, 2nd edition. New York; Cold Spring Harbor Laboratory Press 1989
  • 18 Höfgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation.  Nucleic Acids Res. 1988;  16 9877
  • 19 Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. .  Plant J. 1998;  16 735-43
  • 20 David S J, Vierstra R D. Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. .  Weeds World. 1996;  3 43-8
  • 21 Susan C T, Croteau B C. Genomic organization of plant terpene synthases and molecular evolutionary implications.  Genetics. 2001;  158 811-32
  • 22 Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.  EMBO J. 1987;  6 3901-7
  • 23 Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression.  Plant J. 1994;  5 421-7
  • 24 Itzhaki H, Maxson J M, Woodson W R. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.  Proc Natl Acad Sci USA. 1994;  91 8925-9.
  • 25 Faktor O, Kooter J M, Dixon R A, Lamb C J. Functional dissection of a bean chalcon synthase gene promoter in transgenic tobacco plants reveals sequence motifs essential for floral expression.  Plant Mol Biol. 1996;  32 849-59
  • 26 Rushton P J, Torres J T, Parniske M, Wermert P, Hahlbrock K, Somssich I E. Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parseley PR1 genes.  EMBO J. 1996;  15 5690-700
  • 27 Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B. et al . Arabidopsis MAP kinase 4 negatively regulated systemic acquired resistance.  Cell. 2000;  103 1111-20
  • 28 Bertea C M, Freije J R, van der Woude H, Verstappen F WA, Perk L, Marquez V. et al . Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua.  Planta Med. 2005;  71 40-7
  • 29 Teoh K H, Polichuk D R, Reed D W, Nowak G, Covello P S. Artemisia annua L. (Asteracea) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.  FEBS Lett. 2006;  580 1411-6
  • 30 Bertea C M, Voster A, Verstappen F W, Maffei M, Beekwilder J, Bouwmeester H J. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library.  Arch Biochem Biophys. 2006;  448 3-12
  • 31 Duke S O, Paul R N. Development and fine structure of glandular trichomes of Artemisia annua L.  Int J Plant Sci. 1993;  154 107-18
  • 32 Duke M V, Paul R N, Elsohly H N, Sturtz G, Duke S O. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L.  Int J Plant Sci. 1994;  155 365-72
  • 33 Gutierrez-Alcala G, Calo L, Gros F, Caissard J C, Gotor C, Romero L C. A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants.  J Exp Bot. 2005;  53 2487-94
  • 34 Lücker J, Bowen P, Bohlmann J. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.  Phytochemistry. 2004;  65 2649-59
  • 35 Stalberg K, Ellerstrom M, Sjodahl S, Ezcurra I, Wycliffe P, Rask L. Heterologous and homologous transgenic expression directed by a 2S seed storage promoter of Brassica napus. .  Transgenic Res. 1998;  7 165-71
  • 36 Gruner J, Ericsson J, Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins.  Biochim Biophys Acta. 1994;  1212 259-77

Prof. Soo-Un Kim

Program in Applied Life Chemistry

Department of Agricultural Biotechnology

Seoul National University

Seoul 151-921

Korea

Telefon: +82-2-880-4642

Fax: +82-2-873-3112

eMail: soounkim@plaza.snu.ac.kr

    >