Subscribe to RSS
DOI: 10.1055/s-2008-1042798
Unexpected Reactions: From (2S,3R)-2-(endo-d-Galacto-pentaacetoxypentyl)-1,4-dimethyl-3-exo-nitro-7-oxabicyclo[2.2.1]hept-5-ene to Chiral Cyclic Ethers
Publication History
Publication Date:
26 February 2008 (online)

Abstract
The high-pressure Diels-Alder reaction between 2,5-dimethylfuran and d-galacto-3,4,5,6,7-penta-O-acetyl-1,2-dideoxy-1-nitrohept-1-enitol led, after fractional crystallization from the crude product, to pure (2S,3R)-2-(endo-d-galacto-pentaacetoxypentyl)-1,4-dimethyl-3-exo-nitro-7-oxabicyclo[2.2.1]hept-5-ene. The structure was determined through a chemical route and by X-ray powder diffractometry. De-acetylation of the sugar side chain of this adduct caused the ring opening of the bicyclic system, followed by a tandem process of intramolecular nucleophilic additions, thus leading to new chiral bicyclic and tricyclic ethers.
Key words
asymmetric synthesis - carbohydrate nitroalkenes - Diels-Alder reaction - heterocycles - ring opening
-
1a
Just G.Martel A. Tetrahedron Lett. 1973, 1517 -
1b
Just G.Martel A.Grozinger K.Ramjeesingh M. Can. J. Chem. 1975, 53: 131 -
2a
Grieco PA.Zelle RE.Lis R.Finn J. J. Am. Chem. Soc. 1983, 105: 1403 -
2b
Grieco PA.Zelle RE.Lis R.Finn J. J. Am. Chem. Soc. 1986, 108: 5908 -
3a
Bunnage ME.Ganesh T.Masesane BI.Orton D.Steel PG. Org. Lett. 2003, 5: 239 -
3b
Masesane BI.Steel GP. Tetrahedron Lett. 2004, 45: 5007 -
4a
Just G.Lim M.-I. Can. J. Chem. 1977, 55: 2993 -
4b
Sera A.Itoh K.Yamaguchi H. Tetrahedron Lett. 1990, 31: 6547 -
5a ‘Catalytic Asymmetric Diels-Alder Reactions’:
Hayashi Y. In Cycloaddition Reactions in Organic SynthesisKobayashi S.Jørgensen KA. Wiley-VCH; Weinheim: 2001. p.5 -
5b
Evans DA.Barnes DM. Tetrahedron Lett. 1997, 38: 57 -
5c
Burke MJ.Allan MM.Parvez M.Keay BA. Tetrahedron: Asymmetry 2000, 11: 2733 ; and references therein - 6
Fraile JM.García JI.Gracia D.Mayoral JA.Pires E. J. Org. Chem. 1996, 61: 9479 - 7
Araújo N.Gil MV.Román E.Serrano JA. Synthesis 2006, 2503 - 8
Sowden JC.Schaffer R. J. Am. Chem. Soc. 1950, 73: 4662 -
10a
Dauben WG.Krabbenhoft HO. J. Am. Chem. Soc. 1976, 98: 1992 -
10b
Balthazor TM.Gaede B.Korte DE.Shieh H.-S. J. Org. Chem. 1984, 49: 4547 - 12
Vogel P.Cossy J.Plumet J.Arjona O. Tetrahedron 1999, 55: 13521 -
13a
Brion F. Tetrahedron Lett. 1982, 23: 5299 -
13b
Leroy J.Molines H.Wakselman C. J. Org. Chem. 1987, 52: 290 -
13c
Adrio J.Carretero JC.García Ruano JL.Martín Cabrejas LM. Tetrahedron: Asymmetry 1997, 8: 1623 - 15
Crowley PJ.Fawcett J.Kariuki BM.Moralee AC.Percy JM.Salafia V. Org. Lett. 2002, 4: 4125 - 16
Masesane IB.Batsanov AS.Howard JAK.Mondal R.Steel PG. Beilstein J. Org. Chem. 2006, 2: 9 - 17
Kozikowski AP.Kuniak MP. J. Org. Chem. 1978, 43: 2083 - 18
Lautens M.Chiu P.Colucci TJ. Angew. Chem., Int. Ed. Engl. 1993, 32: 281
References and Notes
This ratio was determined from the 1H NMR spectra of the crude mixture at the end of reaction time, by integration of the signals corresponding to H-5 and H-6 of each stereoisomer.
11The adduct 3 did not afford suitable crystals for their study by single-crystal X-ray analysis. Hence, this compound was analyzed using X-ray powder diffractometry to determine its crystalline structure. The powder was loaded into the holder (3 mm thick) and pressed slightly with a glass slide to ensure a flat surface and thus the absence of instrumental shift in the position of peaks in the diffractogram. The operating conditions for the data collection were: Cu Kα incident radiation (λ = 1.54183 Å), 5-70° scanning interval, 0.02° step size, and 40 s count time per step, using a Philips PW-1800 diffractometer equipped with a graphite secondary monochromator. The compound crystallized in the monoclinic system, with the space group C2, one molecule in the asymmetric unit giving four molecules in the unit cell (Z = 4), and the following unit cell dimensions: a = 23.8333 (10) Å, b = 10.0745 (4) Å, c = 14.3027 (6) Å, and β = 113.28 (1)°.As starting configuration was used the molecule optimized by molecular modelling with a semiempirical quantum chemistry model [code HyperChem: HYPERCHEM. Release 5. Standalone Version. Computational Chemistry, Hypercube Inc., Publication HC50-00-03-00, October 1996, ISBN 1-896164-17-X].The structure was solved by direct-space methods with a ‘Monte-Carlo/parallel tempering’ search algorithm [code FOX: Favre-Nicolin, V.; Cern, R. FOX: a program for ab initio structure solution from powder diffraction data. Laboratory of Crystallography, University of Geneva, Switzerland, 2000], followed by a final refinement using the Rieltved method [code FullProf: Rodríguez-Carvajal, J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on powder diffraction of the XV Congress of the International Union of Crystallography, Toulouse, France, 1990].
14Attempts to prepare the peracetylated derivative of 10 were performed by Ac2O and pyridine treatment from the evaporated reaction mixture of 3 and aq K2CO3, before neutralization with Amberlite IR-120 (H+) resin.
19Selected Data for Compound 3White solid; 43% yield; [α]D 20 -27.2 (c 0.51, CHCl3); mp 189-190 °C. 1H NMR (400 MHz, CDCl3): δ = 6.40 (d, 1 H, J 5,6 = 5.6 Hz, H-6), 6.24 (d, 1 H, H-5), 4.77 (dd, 1 H, J 1 ′ ,2 = 11.3 Hz, H-1′), 4.35 (d, 1 H, J 2,3 = 3.4 Hz, H-3), 2.97 (dd, 1 H, H-2). 13C NMR (100 MHz, CDCl3): δ = 143.1 (C-6), 136.6 (C-5), 92.8 (C-3), 88.5, 87.9 (C-1, C-4), 51.3 (C-2). HRMS (CI): m/z calcd for C23H31NO13Na [M + Na]+: 552.1693; found: 552.1689.Selected Data for Compound 7dPale yellow oil; 60% yield; [α]D 20 +29.4 (c 0.54, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 5.57 (dd, 1 H, J 1 ′ ,2 ′ = 2.4 Hz, H-1′), 5.37 (ddd, 1 H, H-2′), 5.11 (dd, 1 H, J 7,8 = 1.6 Hz, J 1 ′ ,8 = 9.6 Hz, H-8), 4.76 (dd, 1 H, J 1 ′′ a,6 = 6.8 Hz, H-1′′a), 4.49 (dd, 1 H, J 1 ′′ a,1 ′′ b = 13.6 Hz, J 1 ′′ b,6 = 6.0 Hz, H-1′′b), 4.41 (dd, 1 H, J 3b,4 = 4.4 Hz, H-4), 4.29 (dd, 1 H, J 2 ′ , 3 ′ a = 5.6 Hz, H-3′a), 4.27 (dd, 1 H, J 6,7 = 8.8 Hz, H-7), 3.93 (dd, 1 H, J 3 ′ a,3 ′ b = 11.2 Hz, J 2 ′ , 3 ′ b = 7.2 Hz, H-3′b), 2.58 (ddd, 1 H, H-6), 2.29 (br d, 1 H, J 3a,3b = 14.8 Hz, H-3a), 2.09 (dd, 1 H, H-3b). 13C NMR (100 MHz, CDCl3): δ = 106.8 (C-2), 91.7 (C-5), 88.8 (C-4), 79.0 (C-8), 72.7 (C-1′′), 68.9, 68.6, 67.9 (C-1′, C-2′, C-7), 62.0 (C-3′), 47.3 (C-6), 44.1 (C-3). HRMS-FAB: m/z calcd for C21H30NO12Na [M - OH + Na]+: 528.1693; found: 528.1706.Selected Data for Compound 8aPale yellow oil; 20% yield; [α]D 20 +68.0 (c 0.50, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 5.45 (ddd, 1 H, H-2′), 5.23 (dd, 1 H, J 1 ′ ,2 ′ = 1.6 Hz, H-1′), 4.74 (dd, 1 H, J 1 ′′ a,1 ′′ b = 13.6 Hz, J 1 ′′ a,6 = 4.8 Hz, H-1′′a), 4.56 (dd, 1 H, J 1 ′′ b,6 = 9.6 Hz, H-1′′b), 4.48 (br d, 1 H, J 3b,4 = 4.0 Hz, J 3a,4 = 1.0 Hz, H-4), 4.23 (dd, 1 H, J 3 ′ a,3 ′ b = 12.0 Hz, J 2 ′ ,3 ′ a = 4.8 Hz, H-3′a), 4.09 (br d, 1 H, J 6,7 = 6.4 Hz, J 7,8 = 1.0 Hz, H-7), 4.06 (dd, 1 H, J 2 ′ ,3 ′ b = 8.0 Hz, H-3′b), 3.34 (d, 1 H, J 1 ′ ,8 = 9.2 Hz, H-8), 3.05 (ddd, 1 H, H-6), 2.29 (br d, 1 H, J 3a,3b = 14.4 Hz, H-3a), 2.04 (dd, 1 H, H-3b). 13C NMR (100 MHz, CDCl3): δ = 106.7 (C-2), 92.3 (C-5), 89.4 (C-4), 81.1 (C-7), 74.8 (C-1′′), 70.8, 70.2, 69.6 (C-1′, C-2′, C-8), 62.6 (C-3′), 47.9 (C-6), 43.8 (C-3). HRMS (CI): m/z calcd for C19H28NO11 [M + H]+: 446.1662; found: 446.1642.Selected Data for Compound 9ePale yellow oil; 15% yield; [α]D 20 +25.4 (c 0.51, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 5.21 (dd, 1 H, J 1 ′ ,2 = 9.6 Hz, H-2), 4.87 (br s, 1 H, H-7), 4.63 (dd, 1 H, J 1 ′′ a,4 = 7.6 Hz, H-1′′a), 4.59 (br s, 1 H, J 6,Me-8 = 1.2 Hz, J 6,7 = 1.0 Hz, H-6), 4.45 (dd, 1 H, J 1 ′′ a,1 ′′ b = 14.4 Hz, J 1 ′′ b,4 = 4.4 Hz, H-1′′b), 3.66 (dd, 1 H, J 2,3 = 2.4 Hz, J 3,4 = 10.8 Hz, H-3), 2.60 (ddd, 1 H, H-4). 13C NMR (100 MHz, CDCl3): δ = 160.5 (C-8), 95.1 (C-7), 91.7 (C-5), 90.4 (C-6), 75.1 (C-2), 71.4 (C-1′′), 68.7, 68.1, 66.3 (C-1′, C-2′, C-3), 47.1 (C-4). HRMS (CI): m/z calcd for C21H30NO12 [M + H]+: 488.1768; found: 488.1754.