RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078211
Synthesis of Functionalized Pyroglutamic Acids, Part 2: The Stereoselective Condensation of Multifunctional Groups with Chiral Levulinic Acids
Publikationsverlauf
Publikationsdatum:
28. August 2008 (online)

Abstract
A general procedure to access 3-hydroxy-4-oxopentanoic acid derivatives is described. A key feature is an aldol reaction with an enal as a masked pyruvic aldehyde. Chiral levulinic acid derivatives are provided as precursors for isocyanide-mediated condensation of multifunctional groups, which affords functionalized pyroglutamic acids. The stereoselectivity in the Ugi 4C-3C reaction with the chiral keto acids is examined.
Key words
pyroglutamic acid - Ugi reaction - levulinic acid - aldol reaction - Amadori rearrangement
- 1 See the preceding paper:
Buller MJ.Gilley CB.Nguyen B.Olshansky L.Fraga B.Kobayashi Y. Synlett 2008, 2244 - For γ-lactam synthesis, see:
- 2a
Short KM.Mjalli AMM. Tetrahedron Lett. 1997, 38: 359Reference Ris Wihthout Link - 2b
Harriman GCB. Tetrahedron Lett. 1997, 38: 5591Reference Ris Wihthout Link - 2c
Hanusch-Kompa C.Ugi I. Tetrahedron Lett. 1998, 39: 2725Reference Ris Wihthout Link - 2d
Tye H.Whittaker M. Org. Biomol. Chem. 2004, 2: 813Reference Ris Wihthout Link - 2e For γ-lactone
synthesis, see:
Passerini M. Gazz. Chim. Ital. 1923, 53: 331Reference Ris Wihthout Link - For recent reviews on multicomponent condensation reactions, see:
- 2f
Ramon DJ.Yus M. Angew. Chem. Int. Ed. 2005, 44: 1602Reference Ris Wihthout Link - 2g
Dömling A. Chem. Rev. 2006, 106: 17Reference Ris Wihthout Link - 4 For a recent example in the literature,
see:
Mahajan VA.Borate HB.Wakharkar RD. Tetrahedron 2006, 62: 1258 - 5a For
compound 1, see:
Lueoend RM.Walker J.Neier RW. J. Org. Chem. 1992, 57: 5005Reference Ris Wihthout Link - 5b For an ester of compound 4, see:
Kende AS.Kawamura K.Orwat MJ. Tetrahedron Lett. 1989, 30: 5821Reference Ris Wihthout Link - 6
Evans DA.Tedrow JS.Shaw JT.Downey CW. J. Am. Chem. Soc. 2002, 124: 392 - 7
Abiko A.Liu J.-F.Masamune S. J. Org. Chem. 1996, 61: 2590 - 9 Enantioselective synthesis of 4 would be achieved by Mulzer’s
procedure:
Kögl M.Brecker L.Warrass R.Mulzer J. Angew. Chem. Int. Ed. 2007, 46: 9320 - 10a
Gilley CB.Buller MJ.Kobayashi Y. Org. Lett. 2007, 9: 3631Reference Ris Wihthout Link - 10b
Isaacson J.Loo M.Kobayashi Y. Org. Lett. 2008, 10: 1461Reference Ris Wihthout Link - 10c
Isaacson J.Gilley CB.Kobayshi Y. J. Org. Chem. 2007, 72: 3913Reference Ris Wihthout Link - 10d
Vamos M.Ozboya K.Kobayashi Y. Synlett 2007, 1595Reference Ris Wihthout Link - 10e
Kreye O.Westermann B.Wessjohann LA. Synlett 2007, 3188Reference Ris Wihthout Link - 11 The stereochemistry of compound 23 was not determined. For a recent application
of the Amadori rearrangement in natural product synthesis, see:
Guzi TJ.Macdonald TL. Tetrahedron Lett. 1996, 37: 2939
References and Notes
Database search on the reported synthesis of levulinic acid derivatives by MDL CrossFire Commander was conducted on April 25, 2008.
8The anti isomer was also isolated in 18% yield.
12¹H NMR data of the selected compounds are shown below. Compounds 1 and 19 are reported as compounds 10 and 11a, respectively, in the preceding paper.¹ Compound 2: ¹H NMR (400 MHz, CDCl3): δ = 5.01 (br s, 1 H), 4.10 (br s, 1 H), 3.11 (d, J = 4.8 Hz, 1 H), 2.20 (br s, 4 H), 1.34 (d, J = 6.8 Hz, 3 H). Compound 3: ¹H NMR (400 MHz, CDCl3): δ = 7.02 (br s, 1 H), 4.53 (br s, 1 H), 2.95 (br s, 1 H), 2.13 (br s, 4 H), 1.05 (br s, 3 H). Compound 4: ¹H NMR (400 MHz, CDCl3): δ = 4.76 (br s, 1 H), 4.05 (s, 1 H), 1.91 (s, 3 H), 1.27 (s, 3 H), 1.22 (s, 3 H). Compound 5: ¹H NMR (300 MHz, CDCl3): δ = 5.97 (br s, 1 H), 2.99 (d, J = 12.3 Hz, 1 H), 2.66 (d, J = 12.3 Hz, 1 H), 2.25 (s, 3 H), 1.32 (s, 3 H). Compound 8: ¹H NMR (400 MHz, CDCl3): δ = 7.24-7.35 (m, 10 H), 6.56 (s, 1 H), 4.69-4.76 (m, 1 H), 4.16-4.37 (m, 4 H), 3.34 (dd, J = 3.2, 13.6 Hz, 1 H), 2.78 (dd, J = 9.6, 13.6 Hz, 1 H), 1.96 (s, 3 H), 1.18 (d, J = 6.8 Hz, 3 H). Compound 9: ¹H NMR (400 MHz, CDCl3): δ = 7.21-7.36 (m, 10 H), 6.52 (s, 1 H), 5.21 (d, J = 12.4 Hz, 1 H), 5.17 (d, J = 12.4 Hz, 1 H), 4.30 (d, J = 8.4 Hz, 1 H), 2.84 (quin, J = 7.6 Hz, 1 H), 1.86 (s, 3 H), 1.16 (d, J = 7.2 Hz, 3 H). Compound 16: ¹H NMR (300 MHz, CDCl3): δ = 7.28-7.36 (m, 5 H), 5.13 (s, 2 H), 3.67 (s, 1 H), 3.32 (s, 3 H), 3.24 (s, 3 H), 2.73 (d, J = 14.1 Hz, 1 H), 2.40 (d, J = 14.1 Hz, 1 H), 1.30 (br s, 6 H). Compound 17: ¹H NMR (300 MHz, CDCl3): δ = 7.32-7.38 (m, 5 H), 5.14 (d, J = 12.3 Hz, 1 H), 5.09 (d, J = 12.3 Hz, 1 H), 3.05 (d, J = 16.5 Hz, 1 H), 2.69 (d, J = 16.5 Hz, 1 H), 2.29 (s, 3 H), 1.32 (s, 3 H). Compound 20 (major diastereomer, anti): ¹H NMR (400 MHz, CDCl3): δ = 8.97 (s, 1 H), 7.65 (d, J = 8.0 Hz, 1 H), 7.13-7.26 (m, 5 H), 6.79-6.83 (m, 2 H), 5.15 (d, J = 15.6 Hz, 1 H), 4.46-4.49 (m, 2 H), 4.03-4.12 (m, 2 H), 3.77 (s, 3 H), 3.42 (s, 3 H), 3.37 (s, 3 H), 2.77-2.85 (m, 3 H), 1.42 (s, 3 H), 1.28-1.36 (m, 3 H). Compound 21 (major diastereomer, anti): ¹H NMR (300 MHz, CDCl3): δ = 9.14 (s, 1 H), 7.69-7.73 (m, 2 H), 7.11-7.22 (m, 5 H), 6.77-6.84 (m, 2 H), 5.36 (d, J = 15.3 Hz, 1 H), 4.40-4.45 (m, 1 H), 4.00 (d, J = 15.3 Hz, 1 H), 3.77 (s, 3 H), 3.41 (s, 3 H), 3.36 (s, 3 H), 2.81-3.00 (m, 3 H), 1.46 (s, 3 H), 1.28 (s, 3 H), 1.24 (s, 3 H). Compound 22 (major diastereomer, anti): ¹H NMR (400 MHz, CDCl3): δ = 8.94 (s, 1 H), 7.49 (d, J = 8.0 Hz, 1 H), 7.09-7.28 (m, 5 H), 6.79-6.88 (m, 2 H), 4.76 (d, J = 15.2 Hz, 1 H), 4.41-4.45 (m, 1 H), 4.22 (d, J = 15.2 Hz, 1 H), 4.08-4.13 (m, 1 H), 3.74 (s, 3 H), 3.41 (s, 3 H), 3.39 (s, 3 H), 2.74 (m, 3 H), 2.92 (m, 1 H), 1.47 (s, 3 H), 1.41 (s, 3 H). Compound 23: ¹H NMR (400 MHz, CDCl3): δ = 7.21 (d, J = 8.3 Hz, 2 H), 6.83 (d, J = 8.3 Hz, 2 H), 3.74-3.77 (m, 5 H), 3.60 (q, J = 8.8 Hz, 1 H), 3.11 (br s, 1 H), 2.53 (dd, J = 7.2, 17.6 Hz, 1 H), 2.37 (dd, J = 7.6, 17.6 Hz, 1 H), 1.21 (d, J = 6.8 Hz, 3 H), 1.04 (d, J = 7.2 Hz, 3 H).