Planta Med 2020; 86(13/14): 997-1008
DOI: 10.1055/a-1130-4703
Biological and Pharmacological Activity
Original Papers

Isolation, Characterization and Targeted Metabolic Evaluation of Endophytic Fungi Harbored in 14 Seed-Derived Hypericum Species

Jana Henzelyová
1   Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
,
Michaela Antalová
1   Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
,
Katarína Nigutová
1   Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
,
Mariia Logoida
1   Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
,
Andrea Schreiberová
1   Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
,
Souvik Kusari
2   Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
,
Eva Čellárová
1   Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
› Author Affiliations
Supported by: Agentúra na Podporu Výskumu a Vývoja APVV-18-0125
Supported by: Vedecká Grantová Agentúra MŠVVaŠ SR a SAV 1/0013/19

Abstract

Medicinal plants of the genus Hypericum are rich sources of bioactive naphthodianthrones, which are unique in the plant kingdom, but quite common in fungal endophytes. Cultivable endophytic fungi were isolated from 14 different Hypericum spp. originating from seeds grown under in vitro conditions and further acclimated to outdoor conditions. Among 37 fungal isolates yielded from the aerial and underground plant organs, 25 were identified at the species level by the fungal barcode marker internal transcribed spacer rDNA and protein-coding gene region of tef1α. Ten of them were isolated from Hypericum spp. for the first time. The axenic cultures of the isolated endophytes were screened for the production of extracellular enzymes, as well as bioactive naphthodianthrones and their putative precursors by Bornträgerʼs test and HPLC-HRMS. Traces of naphthodianthrones and their intermediates, emodin, emodin anthrone, skyrin, or pseudohypericin, were detected in the fungal mycelia of Acremonium sclerotigenum and Plectosphaerella cucumerina isolated from Hypericum perforatum and Hypericum maculatum, respectively. Traces of emodin, hypericin, and pseudohypericin were released in the broth by Scedosporium apiospermum, P. cucumerina, and Fusarium oxysporum during submerged fermentation. These endophytes were isolated from several hypericin-producing Hypericum spp. Taken together, our results reveal the biosynthetic potential of cultivable endophytic fungi harbored in Hypericum plants as well as evidence of the existence of remarkable plant-endophyte relationships in selected non-native ecological niches. A possible role of the extracellular enzymes in plant secondary metabolism is discussed.



Publication History

Received: 16 December 2019

Accepted after revision: 03 March 2020

Article published online:
15 April 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 2002; 160: 99-127
  • 2 Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 2016; 7: 906
  • 3 Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 2012; 19: 792-798
  • 4 Selim KA, El-Beih AA, AbdEl-Rahman TM, El-Diwany AI. Biodiversity and antimicrobial activity of endophytes associated with Egyptian medicinal plants. Mycosphere 2011; 2: 669-678
  • 5 Sun X, Guo LD. Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 2012; 3: 65-76
  • 6 Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993; 260: 214-216
  • 7 Yazaki K, Okuda T. Hypericum erectum Thunb. (St. Johnʼs Wort): in vitro Culture and the Production of Procyanidins. In: Bajaj YPS. ed. Medicinal and aromatic Plants VI. Biotechnology in Agriculture and Forestry, Vol 26. Berlin, Heidelberg: Springer; 1994: 167-178
  • 8 Marrelli M, Statti G, Conforti F, Menichini F. New potential pharmaceutical applications of Hypericum species. Mini Rev Med Chem 2016; 16: 710-720
  • 9 Kimáková K, Kimáková A, Idkowiak J, Stobiecki M, Rodziewicz P, Marczak L, Čellárová E. Phenotyping the genus Hypericum by secondary metabolite profiling: emodin vs. skyrin, two possible key intermediates in hypericin biosynthesis. Anal Bioanal Chem 2018; 410: 7689-7699
  • 10 Bálintová M, Bruňáková K, Petijová L, Čellárová E. Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant Physiol Biochem 2019; 135: 348-358
  • 11 Jendželovská Z, Jendželovský R, Kuchárová B, Fedoročko P. Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci 2016; 7: 560
  • 12 Kusari S, Lamshöft M, Zühlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 2008; 71: 159-162
  • 13 Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 2005; 68: 1717-1719
  • 14 Zhao J, Zhou L, Wang J, Shan T, Lingyun Z, Liu X, Gao L. Endophytic Fungi for Producing bioactive Compounds originally from their Host Plants. In: Méndez-Vilas A. ed. Current Research, Technology and Education Topics in applied Microbiology and microbial Biotechnology, Vol. 1. Badajoz: Formatex; 2010: 567-576
  • 15 Aly AH, Debbab A, Proksch P. Fungal endophytes – secret producers of bioactive plant metabolites. Pharmazie 2013; 68: 499-505
  • 16 Guo LD, Hyde KD, Liew ECY. A method to promote sporulation in palm endophytic fungi. Fungal Divers 1998; 1: 109-113
  • 17 Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Micriobiol 2017; 8: 199
  • 18 Guo LD, Hyde KD, Liew ECY. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 2000; 147: 617-630
  • 19 Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD. Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 2005; 20: 167-186
  • 20 Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 2017; 80: 756-770
  • 21 Kusari S, Zühlke S, Košuth J, Čellárová E, Spiteller M. Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 2009; 72: 1825-1835
  • 22 Rekosz-Burlaga H, Borys M, Goryluk-Salmonowicz A. Cultivable microorganisms inhabiting the aerial parts of Hypericum perforatum . Acta Sci Pol-Hortoru 2014; 13: 117-129
  • 23 Samaga PV, Rai VR, Rai KML. Production of an antimicrobial cytochalasan by an endophytic Chaetomium globosum HYML55 from Hypericum mysorense and its RNA secondary structure analysis. Chem Ecol 2014; 30: 566-578
  • 24 Zhang H, Ying C, Tang Y. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn. Pak J Pharm Sci 2014; 27: 1153-1156
  • 25 Samaga PV, Rai VR. Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. Ann Microbiol 2016; 66: 229-244
  • 26 Vigneshwari A, Rakk D, Németh A, Kocsubé S, Kiss N, Csupor D, Papp T, Škrbić B, Vágvölgyi C, Szekeres A. Host metabolite producing endophytic fungi isolated from Hypericum perforatum . PLoS One 2019; 14: e0217060
  • 27 Ebrahimi A, Asgharian S, Habibian S. Antimicrobial activities of isolated endophytes from some Iranian native medicinal plants. Iran J Pharm Res 2010; 6: 217-222
  • 28 Lopez-Fuentes E, Ruiz-Valdiviezo VM, Martinez-Romero E, Gutierrez-Miceli FA, Dendooven L, Rincon-Rosales R. Bacterial community in the roots and rhizosphere of Hypericum silenoides Juss. 1804. Afr J Microbiol Res 2012; 6: 2704-2711
  • 29 Popiel D, Kwaśna H, Chełkowski J, Stepien L, Laskowska M. Impact of selected antagonistic fungi on Fusarium species-toxigenic cereal pathogens. Acta Mycol 2008; 43: 29-40
  • 30 Iqbal M, Dubey M, Broberg A, Viketoft M, Funck JD, Karlsson M. Deletion of the nonribosomal peptide synthetase gene nps1 in the fungus Clonostachys rosea attenuates antagonism and biocontrol of plant pathogenic Fusarium and nematodes. Phytopathology 2019; 109: 1698-1709
  • 31 Andrew M, Peever TL, Pryor BM. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 2009; 101: 95-109
  • 32 Lawrence DP, Rotondo F, Gannibal PB. Biodiversity and taxonomy of the pleomorphic genus Alternaria . Mycol Prog 2016; 15: 3
  • 33 Egbuna C, Ifemeje JC, Chinenye MM, Tijjani H, Udedi SC, Nwaka AC, Oluoma IM. Phytochemical Test Methods: qualitative, quantitative and proximate Analysis. In: Egbuna C, Ifemeje JC, Udedi SC, Kumar S. eds. Phytochemistry, Fundamentals, modern Techniques, and Applications, Vol. 1. New York, USA: Apple Academic Press; 2019: 381-425
  • 34 Baker RA, Tatum JH. Novel anthraquinones from stationary cultures of Fusarium oxysporum . J Biosci Bioeng 1998; 85: 359-361
  • 35 El-Fouly MZ, Hassan EA, El-Bialy HA, Ramadan EM, Alsharqawey AA. A study on strategies applied for enhancing anthraquinones production by Fusarium spp. Arab J Nucl Sci Appl 2017; 50: 217-231
  • 36 Agusta A, Ohashi K, Shibuya H. Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp. Chem Pharm Bull 2006; 54: 579-582
  • 37 Tian WJ, Liao ZJ, Zhoul M, Wang GH, Wu Y, Gao S, Qiu DR, Liu XZ, Lin T, Chen HF. Cytoskyrin C, an unusual asymmetric bisanthraquinone with cage-like skeleton from the endophytic fungus Diaporthe sp. Fitoterapia 2018; 128: 253-257
  • 38 Popli D, Anil V, Subramanyam AB, Namratha MN, Ranjitha VR, Rao SN, Rai RV, Govindappa M. Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 2018; 46: 676-683
  • 39 Navada KK, Sanjeev G, Kulal A. Enhanced biodegradation and kinetics of anthraquinone dye by laccase from an electron beam irradiated endophytic fungus. Int Biodeterior Biodegradation 2018; 132: 241-250
  • 40 Yoo HS, Ting ASY. In vitro endophyte-host plant interaction study to hypothetically describe endophyte survival and antifungal activities in planta . Acta Biol Szeged 2017; 61: 1-11
  • 41 Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CGM, Polizeri MLTM, Bracht A, Peralta RM. Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 2014; 41: 1467
  • 42 Kucharíková A, Kusari S, Sezgin S, Spiteller M, Cellarova E. Occurrence and distribution of phytochemicals in the leaves of 17 in vitro cultured Hypericum spp. adapted to outdoor conditions. Front Plant Sci 2016; 7: 1616
  • 43 Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 1962; 15: 473-497
  • 44 Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 1968; 50: 151-158
  • 45 Košuth J, Smelcerovic A, Borsch T, Zühlke S, Karppinen K, Spiteller M, Hohtola A, Čellárová E. The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum . Funct Plant Biol 2011; 38: 35-43
  • 46 Henzelyová J, Čellárová E. Modulation of naphthodianthrone biosynthesis in hairy root-derived Hypericum tomentosum regenerants. Acta Physiol Plant 2018; 40: 82
  • 47 White TJ, Bruns T, Lee S, Taylor J. Amplification and direct Sequencing of fungal ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. eds. PCR Protocols: a Guide to Methods and Applications. New York: Academic Press, Inc.; 1990: 315-322
  • 48 Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Lomascolo A. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015; 35: 242
  • 49 Geiser DM, del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, Oʼdonnell K. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium . Eur J Plant Pathol 2004; 110: 473-479
  • 50 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-1549
  • 51 Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP. Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2012; 2: 13-19
  • 52 Nigutová K, Kusari S, Sezgin S, Petijová L, Henzelyová J, Bálintová M, Spiteller M, Čellárová E. Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants. J Pharm Pharmacol 2019; 71: 46-57