Synthesis 2022; 54(04): 925-942
DOI: 10.1055/a-1480-3215
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Highly Efficient Visible-Light-Driven [2+2] Cycloaddition of Maleimides to Alkenes and Alkynes for the Synthesis of 3-Aza­bicyclo[3.2.0]heptane-Fused Scaffolds

Jian He
,
Qiang Liu
We thank the National Natural Science Foundation of China for financial support (No. 21871123).


Abstract

A highly efficient [2+2] cycloaddition between maleimides and unsaturated moieties, utilizing a visible-light triplet sensitization mode, has been developed for the direct synthesis of multifunctional 3-azabicyclo[3.2.0]heptane derivatives. This reaction relies on selective activation of the maleimide functionality upon energy transfer from a new photosensitizer that outperforms diverse well-established photosensitizers. The strategy developed herein overcomes previous obstacles such as limited substrate scope and undesired reaction pathways under harsh UV irradiation.

Supporting Information



Publication History

Received: 18 March 2021

Accepted after revision: 12 April 2021

Accepted Manuscript online:
12 April 2021

Article published online:
12 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Bach T, Krüger C, Harms K. Synthesis 2000; 305
    • 1b Petz S, Wanner KT. Eur. J. Org. Chem. 2013; 4017
    • 1c Homon AA, Hryshchuk OV, Trofymchuk S, Michurin O, Kuchkovska Y, Radchenko DS, Grygorenko OO. Eur. J. Org. Chem. 2018; 5596
  • 2 Gutekunst WR, Baran PS. J. Org. Chem. 2014; 79: 2430
    • 3a Kryger MJ, Munaretto AM, Moore JS. J. Am. Chem. Soc. 2011; 133: 18992
    • 3b Wiggins KM, Brantley JN, Bielawski CW. ACS Macro Lett. 2012; 1: 623
    • 3c Wang J, Kouznetsova TB, Boulatov R, Craig SL. Nat. Commun. 2016; 7: 13433
  • 4 Fernández-Tejada A, Corzana F, Busto JH, Jiménez-Osés G, Peregrina JM, Avenoza A. Chem. Eur. J. 2008; 14: 7042
    • 5a Steri R, Rupp M, Proschak E, Schroeter T, Zettl H, Hansen K, Schwarz O, Müller-Kuhrt L, Müller K.-R, Schneider G, Schubert-Zsilavecz M. Bioorg. Med. Chem. Lett. 2010; 20: 2920
    • 5b Liu Q, Li N, Yuan Y, Lu H, Wu X, Zhou C, He M, Su H, Zhang M, Wang J, Wang B, Wang Y, Ma D, Ye Y, Weiss H.-C, Gesing ER. F, Liao J, Wang M.-W. J. Med. Chem. 2012; 55: 250

      For intramolecular metal-catalyzed cyclizations into 3-azabicyclo[3.2.0]heptanes, see:
    • 6a Hong Y.-H, Yoon S.-K, Kang S.-K, Yu C.-M. Eur. J. Org. Chem. 2004; 4628
    • 6b Bouwkamp MW, Bowman AC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2006; 128: 13340
    • 6c Jiang X, Cheng X, Ma S. Angew. Chem. Int. Ed. 2006; 45: 8009
    • 6d Luzung M, Mauleon P, Toste D. J. Am. Chem. Soc. 2007; 129: 12402
    • 6e Teller H, Flugge S, Goddard R, Furstner A. Angew. Chem. Int. Ed. 2010; 49: 1949
    • 6f Gonzalez A, Benitez D, Tkatchouk E, Goddard W, Toste D. J. Am. Chem. Soc. 2011; 133: 5500
    • 6g Gulias M, Collado A, Trillo B, Lopez F, Onate E, Esteruelas M, Mascarenas J. J. Am. Chem. Soc. 2011; 133: 7660

      For intramolecular [2+2]-photochemical cycloaddition leading to 3-azabicyclo[3.2.0] heptanes, see:
    • 7a Steiner G, Munschauer R, Klebe G, Siggel L. Heterocycles 1995; 40: 319
    • 7b See ref. 1a
    • 7c Pedrosa R, Andrés C, Nieto J, del Pozo S. J. Org. Chem. 2003; 68: 4923
    • 7d Basler B, Schuster O, Bach T. J. Org. Chem. 2005; 70: 9798
    • 7e Albrecht D, Basler B, Bach T. J. Org. Chem. 2008; 73: 2345
    • 7f Fort DA, Woltering TJ, Nettekoven M, Knust H, Bach T. Angew. Chem. Int. Ed. 2012; 51: 1
    • 7g Ischay MA, Lu Z, Yoon TP. J. Am. Chem. Soc. 2010; 132: 8572
    • 7h Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2012; 51: 10329
    • 7i Hurtley AE, Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 8991
    • 7j Iyer A, Jockusch S, Sivaguru J. J. Phys. Chem. A 2014; 118: 10596
    • 7k Iyer A, Jockusch S, Sivaguru J. Chem. Commun. 2017; 53: 1692
    • 7l Denisenko AV, Druzhenko T, Skalenko Y, Samoilenko M, Grygorenko OO, Zozulya S, Mykhailiuk PK. J. Org. Chem. 2017; 82: 9627
    • 8a Reid ST, De Silva D. Tetrahedron Lett. 1983; 24: 1949
    • 8b Andre V, Gras M, Awada H, Guillot R, Robin S, Aitken DJ. Tetrahedron 2013; 69: 3571
    • 8c Andre V, Vidal A, Ollivier J, Robin S, Aitken DJ. Tetrahedron Lett. 2011; 52: 1253
    • 8d Booker-Milburn KI, Gulten S, Sharpe A. Chem. Commun. 1997; 1385
    • 8e Booker-Milburn KI, Cowell JK, Jiménez FD, Sharpe A, White AJ. Tetrahedron 1999; 55: 5875
    • 8f Booker-Milburn KI, Wood PM, Dainty RF, Urquhart MW, White AJ, Lyon HJ, Charmant JP. H. Org. Lett. 2002; 4: 1487
    • 8g Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 15226
    • 8h Chang Z, Boyaud F, Guillot R, Boddaert T, Aitken DJ. J. Org. Chem. 2018; 83: 527
    • 8i Skalenko YA, Druzhenko TV, Denisenko AV, Samoilenko MV, Dacenko OP, Trofymchuk SA, Grygorenko OO, Tolmachev AA, Mykhailiuk PK. J. Org. Chem. 2018; 83: 6275
    • 8j Demchuk OP, Hryshchuk OV, Vashchenko BV, Kozytskiy AV, Tymtsunik AV, Komarov IV, Grygorenko OO. J. Org. Chem. 2020; 85: 5927
    • 9a Kriis K, Ausmees K, Pehk T, Lopp M, Kanger T. Org. Lett. 2010; 12: 2230
    • 9b Reinart-Okugbeni R, Ausmees K, Kriis K, Werner F, Rinken A, Kanger T. Eur. J. Med. Chem. 2012; 55: 255
    • 9c Ausmees K, Kriis K, Pehk T, Werner F, Järving I, Lopp M, Kanger T. J. Org. Chem. 2012; 77: 10680
    • 10a Kumarasamy E, Raghunathan R, Jockusch S, Ugrinov A, Sivaguru J. J. Am. Chem. Soc. 2014; 136: 8729
    • 10b Ahuja S, Raghunathan R, Kumarasamy E, Jockusch S, Sivaguru J. J. Am. Chem. Soc. 2018; 140: 13185
    • 10c Ahuja S, Jockusch S, Ugrinov A, Sivaguru J. Eur. J. Org. Chem. 2020; 1478
    • 10d Zheng J, Swords WB, Jung H, Skubi KL, Kidd JB, Meyer GJ, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2019; 141: 13625
    • 10e Ha S, Lee Y, Kwak Y, Mishra A, Yu E, Ryou B, Park C.-M. Nat. Commun. 2020; 11: 2509
  • 11 He J, Bai Z.-Q, Yuan P.-F, Wu L.-Z, Liu Q. ACS Catal. 2021; 11: 446
  • 12 Martinez-Haya R, Marzo L, König B. Chem. Commun. 2018; 54: 11602
  • 13 Liu Q, Zhu F.-P, Jin X.-L, Wang X.-J, Chen H, Wu L.-Z. Chem. Eur. J. 2015; 21: 10326
  • 14 Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. In Photochemistry and Photophysics of Coordination Compounds II . Balzani V, Campagna S. Springer; Berlin: 2007: 143
    • 15a Zhu M, Zheng C, Zhang X, You S.-L. J. Am. Chem. Soc. 2019; 141: 2636
    • 15b Oderinde MS, Mao E, Ramirez A, Pawluczyk J, Jorge C, Cornelius LA. M, Kempson J, Vetrichelvan M, Pitchai M, Gupta A, Gupta AK, Meanwell NA, Mathur A, Dhar TG. M. J. Am. Chem. Soc. 2020; 142: 3094
    • 15c Zhu M, Xu H, Zhang X, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 7036
    • 15d Hu N, Jung H, Zheng Y, Lee J, Zhang L, Ullah Z, Xie X, Harms K, Baik M.-H, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 6242
    • 15e Strieth-Kalthoff F, Henkel C, Teders M, Kahnt A, Knolle W, Gómez-Suárez A, Dirian K, Alex W, Bergander K, Daniliuc CG, Abel B, Guldi DM, Glorius F. Chem 2019; 5: 2183