Synthesis 2022; 54(03): 770-778
DOI: 10.1055/a-1580-9688
paper

One-Pot Synthesis of 4H-Pyrano[3,2-c]coumarin Derivatives Catalyzed by Deep Eutectic Solvent

Zongbo Xie
a   Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
,
Hongxia Li
a   Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
,
Jiangnan Yang
a   Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
,
Xiao Zhu
a   Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
,
Zhanggao Le
a   Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
› Author Affiliations
This project was supported by the National Natural Science Foundation of China (Nos. 11765002, 21966003) and the Science and Technology Project of Jiangxi (No. 20192BBH80012).


Abstract

4H-Pyrano[3,2-c]coumarin derivatives are an important class of pharmaceutical compounds that are expensive to prepare by previously reported methods. An efficient and green method was developed to obtain these derivatives using the deep eutectic solvent (DES) zinc chloride/acetamide (n:n = 1:4), which acted as both the catalyst and the solvent for the reaction. An aromatic aldehyde, 4-hydroxycoumarin, and cyanoacetate were used as the substrates. The DES, substrate molar ratio, diluent type, temperature, and reaction time were optimized to obtain the 4H-pyrano[3,2-c]coumarin derivatives from a range of aromatic aldehydes in a single step in moderate to high yields and under mild reaction conditions.

Supporting Information



Publication History

Received: 26 June 2021

Accepted after revision: 09 August 2021

Accepted Manuscript online:
09 August 2021

Article published online:
13 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Akchurin IO, Yakhutina AI, Bochkov AY, Solovjova NP, Medvedev MG, Traven VF. J. Mol. Struct. 2018; 1160: 215
  • 2 Akchurin IO, Yakhutina AI, Bochkov AY, Solovjova NP, Traven VF. Heterocycl. Commun. 2018; 24: 85
  • 3 Ataee-Kachouei T, Nasr-Esfahani M, Mohammadpoor-Baltork I, Mirkhani V, Moghadam M, Tangestaninejad S, Notash B. Appl. Organomet. Chem. 2020; 34: e5948
  • 4 Chang X, Zeng P, Chen Z. Eur. J. Org. Chem. 2019; 6478
  • 5 Cheng C, Chen W.-W, Xu B, Xu M.-H. Org. Chem. Front. 2016; 3: 1111
  • 6 Chu X, Tang Z, Ma J, He L, Feng L, Ma C. Tetrahedron 2018; 74: 970
  • 7 Cortes I, Cala LJ, Bracca AB. J, Kaufman TS. RSC Adv. 2020; 10: 33344
  • 8 Dubovtsev AY, Silaichev PS, Nazarov MA, Dmitriev MV, Maslivets AN, Rubin M. RSC Adv. 2016; 6: 84730
  • 9 Fattah TA, Saeed A, Al-Hiari YM, Kasabri V, Almasri IM, AlAlawi S, Larik FA, Channar PA. J. Mol. Struct. 2019; 1179: 390
  • 10 Kaneria AR, Giri RR, Bhila VG, Prajapati HJ, Brahmbhatt DI. Arab. J. Chem. 2017; 10: S1100
  • 11 Karimi-Jaberi Z, Masoudi B, Rahmani A, Alborzi K. Polycycl. Arom. Comp. 2020; 40: 99
  • 12 Kolita S, Bhuyan PJ. ChemistrySelect 2018; 3: 1411
  • 13 Mahato S, Santra S, Chatterjee R, Zyryanov GV, Hajra A, Majee A. Green Chem. 2017; 19: 3282
  • 14 Mukherjee A, Mahato S, Zyryanov GV, Majee A, Santra S. New J. Chem. 2020; 44: 18980
  • 15 Salari M, Mosslemi MH, Hassanabadi A. J. Chem. Res. 2016; 655
  • 16 Wadhwa D, Arora V, Arora L, Arora P, Parkash O. J. Heterocycl. Chem. 2016; 53: 1030
  • 17 Yang S.-M, Wang C.-Y, Lin C.-K, Karanam P, Reddy GM, Tsai Y.-L, Lin W. Angew. Chem. Int. Ed. 2018; 57: 1668
  • 18 Yoon JA, Han YT. Synthesis 2019; 51: 4611
  • 19 Zhou H, Deng X, Ma Z, Zhang A, Qin Q, Tan RX, Yu S. Org. Biomol. Chem. 2016; 14: 6065
  • 20 Zhou T, Wang D.-L, Pan G.-Y, Qian J.-H. Heterocycles 2017; 94: 957
  • 21 Mahato S, Santra S, Chatterjee R, Zyryanov GV, Hajra A, Majee A. Green Chem. 2017; 19: 3282
  • 22 Sarma R, Sarmah MM, Lekhok KC, Prajapati D. Synlett 2010; 2847
  • 23 Yang Y, Liu Y, Zhu R, Zhang D. Inorg. Chem. 2020; 59: 4741
  • 24 Ding D, Zhu G, Jiang X. Angew. Chem. Int. Ed. 2018; 57: 9028
  • 25 He M, Yan Z, Wang W, Zhu F, Lin S. Tetrahedron Lett. 2018; 59: 3706
  • 26 Noland WE, Kumar HV, Sharma A, Wei B, Girmachew S. Org. Lett. 2020; 22: 1801
  • 27 Sarih NM, Ciupa A, Moss S, Myers P, Slater AG, Abdullah Z, Tajuddin HA, Maher S. Sci. Rep. 2020; 10: 1
  • 28 Uchiyama C, Miyadera Y, Hayashi Y, Yakushiji F. ChemistrySelect 2017; 2: 3794
  • 29 Vafajoo Z, Veisi H, Maghsoodlu MT, Ahmadian H. C. R. Chim. 2014; 17: 301
  • 30 Kerru N, Gummidi L, Gangu KK, Maddila S, Jonnalagadda SB. ChemistrySelect 2020; 5: 4104
  • 31 Safaei-Ghomi J, Babaei P, Shahbazi-Alavi H, Pyne SG, Willis AC. J. Iran. Chem. Soc. 2016; 13: 1439
  • 32 Safaei-Ghomi J, Babaei P, Shahbazi-Alavi H, Zahedi S. J. Saudi Chem. Soc. 2017; 21: 929
  • 33 Wang H-J, Lu J, Zhang Z-H. Monatsh. Chem. 2010; 141: 1107
  • 34 Kiyani H, Ghorbani F. Res. Chem. Intermed. 2015; 41: 4031
  • 35 Ali B, Reza H, Ana Rita CD, Sona R. Fluid Phase Equilib. 2020; 521: 112662
  • 36 Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionísio M, Barreiros S, Reis RL, Duarte AR. C, Paiva A. J. Mol. Liq. 2016; 215: 534
  • 37 Mert A, Luciano TC, Santiago A. J. Mol. Liq. 2017; 247: 116
  • 38 Nicolás FG.-P, Michael JL, Joshua MW, Ángel L, Joan FB, Roberto IC. J. Chem. Thermodyn 2019; 133: 272
  • 39 Rafael A, Mert A, Santiago A. J. Mol. Liq. 2018; 272: 815
  • 40 Ricky S, Rashmi W, Mohammad K, Nabisab Mujawar M. J. Mol. Liq. 2020; 310: Article 113232
  • 41 Ruggeri S, Poletti F, Zanardi C, Pigani L, Zanfrognini B, Corsi E, Dossi N, Salomäki M, Kivelä H, Lukkari J, Terzi F. Electrochim. Acta 2018; 295: 124
  • 42 Rusul Khaleel I, Maan H, Mohammed Abdulhakim A, Shaliza I, Adeeb H, Mohd Ali H. J. Mol. Liq. 2018; 276: 794
  • 43 Sara CC, José OF. Trends Anal. Chem. 2018; 105: 225
  • 44 Xiaoxia L, Kyung Ho R. J. Sep. Sci. 2016; 39: 3505
  • 45 Yang L, Friesen JB, James BM, David CL, Shao-Nong C, Guido FP. J. Nat. Prod. 2018; 81: 679
  • 46 Abbaspour-Gilandeh E, Aghaei-Hashjin M, Yahyazadeh A, Salemi H. RSC Adv. 2016; 6: 55444
  • 47 Gupta R, Layek S, Pathak DD. Res. Chem. Intermed. 2018; 45: 1619
  • 48 Hosseinzadeh-Baghan S, Mirzaei M, Eshtiagh-Hosseini H, Zadsirjan V, Heravi MM, Mague JT. Appl. Organomet. Chem. 2020; 34: e5793
  • 49 Kiyani H, Tazari M. Res. Chem. Intermed. 2017; 43: 6639
  • 50 Fu Y, Lu Z, Ma X, Fang K, Hu Y. Bioorg. Chem. 2020; 99: 103888
  • 51 Babaei F, Asghari S, Tajbakhsh M. Res. Chem. Intermed. 2019; 45: 4693
  • 52 Rahmatinejad S, Naeimi H. Appl. Organomet. Chem. 2020; 34: e5862
  • 53 Subbareddy CV, Subashini R, Sumathi S. J. Mol. Struct. 2018; 1171: 747
  • 54 Wang J, Shi DQ, Zhuang QY, Wang XS, Hu HW. J. Chem. Res. 2004; 818