Synthesis 2022; 54(06): 1601-1612
DOI: 10.1055/a-1683-0315
paper

Diarylamines with the Neighboring Pyridyl Group: Synthesis and Modulation of the Amine Functionality via Intramolecular H-Bonding

Oleg A. Levitskiy
a   Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation
,
Ivan A. Klimchuk
a   Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation
,
Yuri K. Grishin
a   Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation
,
Vitaly A. Roznyatovsky
a   Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation
,
Boris N. Tarasevich
a   Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation
,
a   Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation
b   National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (Project number 19-13-00094). The NMR part of this work was supported by M.V. Lomonosov Moscow State University Program of Development.


Abstract

New pyridyl-containing diarylamines were obtained via Cu-assisted reductive amination of the ortho-2-pyridylarylboronic acids. Comparative analysis of the spectral and electrochemical data obtained for new diarylamines and their pyridyl-free counterparts revealed the intramolecular H-bond (IMHB) formation which significantly influences the properties of the amino group. The electron density at the N atom of the amino group is increased due to partial weakening of the N–H bond, although the BDE and activation energy for the H-atom abstraction is increased due to the chelating effect of two N atoms. The ortho-pyridyl-containing diarylamines are more prone to be oxidized as compared to their pyridyl-free counterparts; the shift in the oxidation potential values correlates with the strength of the intramolecular H-bonding which can be tuned by inserting substituents in the pyridyl or phenyl rings. The IMHB is reserved even in polar solvents having a significant H-acceptor ability (such as DMSO) but can be destroyed in methanol, testifying in favor of the dynamic nature of the H-bonding.

Supporting Information



Publication History

Received: 03 August 2021

Accepted after revision: 29 October 2021

Accepted Manuscript online:
29 October 2021

Article published online:
29 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lawrence SA. Amines: Synthesis, Properties and Applications, Vol. 1. Cambridge University Press; Cambridge: 2004
  • 2 Shah R, Poon J.-F, Haidasz EA, Pratt DA. J. Org. Chem. 2021; 86: 6538
  • 3 Hanthorn JJ, Amorati R, Valgimigli L, Pratt DA. J. Org. Chem. 2012; 77: 6895
  • 4 Davidson JJ, DeMott JC, Douvris C, Fafard CM, Bhuvanesh N, Chen C.-H, Herbert DE, Lee C.-I, McCulloch BJ, Foxman BM, Ozerov OV. Inorg. Chem. 2015; 54: 2916
  • 5 Malthus SJ, Cameron SA, Brooker S. Coord. Chem. Rev. 2016; 316: 125
  • 6 Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
  • 7 Rezai T, Bock JE, Zhou MV, Kalyanaraman C, Lokey RS, Jacobson MP. J. Am. Chem. Soc. 2006; 128: 14073
  • 8 Giordanetto F, Tyrchan C, Ulander J. ACS Med. Chem. Lett. 2017; 8: 139
  • 9 Kuhn B, Mohr P, Stahl M. J. Med. Chem. 2010; 53: 2601
  • 10 Caron G, Kihlberg J, Ermondi G. Med. Res. Rev. 2019; 39: 1707
  • 11 Charifson PS, Grillot A.-L, Grossman TH, Parsons JD, Badia M, Bellon S, Deininger DD, Drumm JE, Gross CH, LeTiran A, Liao Y, Mani N, Nicolau DP, Perola E, Ronkin S, Shannon D, Swenson LL, Tang Q, Tessier PR, Tian S.-K, Trudeau M, Wang T, Wei Y, Zhang H, Stamos D. J. Med. Chem. 2008; 51: 5243
  • 12 Erşatır M, Yıldırım M. Synth. Commun. 2021; 51: 1252
  • 13 Schenkel LB, DiMauro EF, Nguyen HN, Chakka N, Du B, Foti RS, Guzman-Perez A, Jarosh M, La DS, Ligutti J, Milgram BC, Moyer BD, Peterson EA, Roberts J, Yu VL, Weiss MM. Bioorg. Med. Chem. Lett. 2017; 27: 3817
  • 14 Araneda JF, Piers WE, Heyne B, Parvez M, McDonald R. Angew. Chem. Int. Ed. 2011; 50: 12214
  • 15 Tang C, Yuan Y, Cui Y, Jiao N. Eur. J. Org. Chem. 2013; 2013: 7480
  • 16 Du J, Yang Y, Feng H, Li Y, Zhou B. Chem. Eur. J. 2014; 20: 5727
  • 17 Kim HJ, Ajitha MJ, Lee Y, Ryu J, Kim J, Lee Y, Jung Y, Chang S. J. Am. Chem. Soc. 2014; 136: 1132
  • 18 Shi L, Wang B. Org. Lett. 2016; 18: 2820
  • 19 Chen J, Huang D, Ding Y. Eur. J. Org. Chem. 2017; 2017: 4300
  • 20 Uemura T, Imoto S, Chatani N. Chem. Lett. 2006; 35: 842
  • 21 Zou M, Liu J, Tang C, Jiao N. Org. Lett. 2016; 18: 3030
  • 22 Ramírez-López P, Ros A, Romero-Arenas A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2016; 138: 12053
  • 23 Shao X, Dou C, Liu J, Wang L. Sci. China Chem. 2019; 62: 1387
  • 24 Kim K, Jung Y, Lee S, Kim M, Shin D, Byun H, Cho SJ, Song H, Kim H. Angew. Chem. Int. Ed. 2017; 56: 6952
  • 25 Serra J, Parella T, Ribas X. Chem. Sci. 2017; 8: 946
  • 26 Ali MA, Yao X, Li G, Lu H. Org. Lett. 2016; 18: 1386
  • 27 Yu S, Tang G, Li Y, Zhou X, Lan Y, Li X. Angew. Chem. Int. Ed. 2016; 55: 8696
  • 28 Chen J, Li J, Dong Z. Adv. Synth. Catal. 2020; 362: 3311
  • 29 Yu Y, Srogl J, Liebeskind LS. Org. Lett. 2004; 6: 2631
  • 30 Levitskiy OA, Grishin YK, Sentyurin VV, Bogdanov AV, Magdesieva TV. Chem. Eur. J. 2017; 23: 12575
  • 31 Weiss M. J. Am. Chem. Soc. 1952; 74: 200
  • 32 Mukaiyama T, Banno K, Narasaka K. J. Am. Chem. Soc. 1974; 96: 7503
  • 33 Bonnet V, Mongin F, Trécourt F, Quéguiner G, Knochel P. Tetrahedron 2002; 58: 4429
  • 34 Zhao D, Johansson M, Bäckvall J.-E. Eur. J. Org. Chem. 2007; 2007: 4431
  • 35 Bunyan PJ, Cadogan JI. G. J. Chem. Soc. 1963; 42
  • 36 Katritzky AR, Patel RC, Zia A. J. Chem. Soc., Perkin Trans. 1 1982; 137
  • 37 Görlitzer K, Heinrici C. Arch. Pharm. (Weinheim) 1988; 321: 477
  • 38 Marek R, Lycka A, Kolehmainen E, Sievanen E, Tousek J. Curr. Org. Chem. 2007; 11: 1154
  • 39 Roscales S, Csákÿ AG. Org. Lett. 2018; 20: 1667
  • 40 Levitskiy OA, Dulov DA, Bogdanov AV, Grishin YK, Nefedov SE, Magdesieva TV. Chem. Eur. J. 2020; 26: 6793
  • 41 Over B, Matsson P, Tyrchan C, Artursson P, Doak BC, Foley MA, Hilgendorf C, Johnston SE, Lee MD, Lewis RJ, McCarren P, Muncipinto G, Norinder U, Perry MW. D, Duvall JR, Kihlberg J. Nat. Chem. Biol. 2016; 12: 1065
  • 42 Gordon AJ, Ford RA. The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References. John Wiley & Sons; New York: 1973
  • 43 Abraham MH. Chem. Soc. Rev. 1993; 22: 73
  • 44 Lau JL, Dunn MK. Bioorg. Med. Chem. 2018; 26: 2700
  • 45 Levitskiy OA, Dulov DA, Nikitin OM, Bogdanov AV, Eremin DB, Paseshnichenko KA, Magdesieva TV. ChemElectroChem 2018; 5: 3391
  • 46 Serve D. Electrochim. Acta 1976; 21: 1171
  • 47 Wiberg KB, Lewis TP. J. Am. Chem. Soc. 1970; 92: 7154
  • 48 Hanthorn JJ, Valgimigli L, Pratt DA. J. Am. Chem. Soc. 2012; 134: 8306
  • 49 Armarego WL. F. Purification of Laboratory Chemicals, 8th ed. Butterworth-Heinemann; Oxford: 2017
  • 50 Tobe Y, Utsumi N, Nagano A, Sonoda M, Naemura K. Tetrahedron 2001; 57: 8075
  • 51 Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018; 8: e1327
  • 52 Perdew JP, Burke K, Ernzerhof M. Phys. Rev. Lett. 1997; 78: 1396
  • 53 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 54 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
  • 55 Weigend F. Phys. Chem. Chem. Phys. 2006; 8: 1057
  • 56 Grimme S. Chem. Eur. J. 2012; 18: 9955
  • 57 Overberger CG, Schiller AM. J. Polym. Sci., Part C: Polym. Symp. 2007; 1: 325
  • 58 Lulinski P, Skulski L. Bull. Chem. Soc. Jpn. 1997; 70: 1665
  • 59 Wassmundt FW, Kiesman WF. J. Org. Chem. 1995; 60: 1713