Synthesis 2022; 54(13): 3077-3084
DOI: 10.1055/a-1770-8592
paper

Palladium-Catalyzed Cyanation of Arenediazonium Tetrafluoroborate Derivatives with 2-(Piperidin-1-yl)acetonitrile as the Cyano Source

a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511436, P. R. of China
,
Zahid Shafiq
b   Institute of Chemical Sciences, Bhahauddin Zakariya University, Multan, 60800, Pakistan
,
a   School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511436, P. R. of China
› Institutsangaben
Jinan University


Abstract

The present study describes the one-pot palladium-catalyzed cyanation of commercially available aryldiazonium tetrafluoroborate derivatives with 2-(piperidin-1-yl)acetonitrile (an organic cyano reagent) under mild conditions. This process utilizes a Pd/(Me3Si)2 system and is applied to a wide scope of aromatic diazonium substrates to give the corresponding nitrile-containing products in moderate to high yields (59–92%). This methodology is employed for the preparation of etravirine, a drug used for the treatment of HIV, and for transformations of 1H-indole-2-carbonitrile into compounds that are used as a NMDA receptor antagonists and that have high potential against mutant HIV strains. The mechanism proposed for this Pd-catalyzed cyanation involves cyanide ions, as confirmed using indicator paper.

Supporting Information



Publikationsverlauf

Eingereicht: 30. Dezember 2021

Angenommen nach Revision: 14. Februar 2022

Accepted Manuscript online:
14. Februar 2022

Artikel online veröffentlicht:
25. April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For examples, see:
    • 1a Kleemann A, Engel J, Kutschner B, Reichert D. Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
    • 1b Review: Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 1c Ahmad MS, Pulidindi IN, Li C. New J. Chem. 2020; 44: 17177
    • 1d Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 2a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 2b Kochi JK. J. Am. Chem. Soc. 1957; 79: 2942
    • 2c Lindley J. Tetrahedron 1984; 40: 1433
    • 2d Review: Hodgson HH. Chem. Rev. 1947; 40: 251
    • 2e Barbero M, Cadamuro S, Dughera S. Org. Biomol. Chem. 2016; 14: 1437

      For selected examples of NaCN as a CN source, see:
    • 3a Cassar L. J. Organomet. Chem. 1973; 54: C57
    • 3b Cassar L, Ferrara S, Foá M. Adv. Chem. Ser. 1974; 132: 252
    • 3c Cassar L, Foá M, Montanari F, Marinelli GP. J. Organomet. Chem. 1979; 173: 335
    • 3d Okano T, Iwahara M, Kiji J. Synlett 1998; 243
    • 3e Dalton JR, Regen SL. J. Org. Chem. 1979; 44: 4443
    • 3f Zanon J, Klarpars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
    • 3g Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999

      For selected examples of KCN as a CN source, see:
    • 4a Takagi K, Okamoto T, Sakakibara Y, Oka S. Chem. Lett. 1973; 471
    • 4b Akita Y, Shimazaki M, Ohta A. Synthesis 1981; 974
    • 4c Sakakibara Y, Okuda F, Shimobayashi A, Kirino K, Sakai M, Uchino N, Takagi K. Bull. Chem. Soc. Jpn. 1988; 61: 1985
    • 4d Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
    • 4e Sundermeier M, Zapf A, Beller M, Sans J. Tetrahedron Lett. 2001; 42: 6707
    • 4f Sundermeier M, Zapf A, Mutyala S, Baumann W, Sans J, Weiss S, Beller M. Chem. Eur. J. 2003; 9: 1828
    • 4g Yang C, Williams JM. Org. Lett. 2004; 6: 2837
    • 4h Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483

      For selected examples of Zn(CN)2 as a CN source, see:
    • 5a Tschaen DM, Desmond R, King AO, Fortin MC, Pipik B, King S, Verhoeven TR. Synth. Commun. 1994; 24: 887
    • 5b Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
    • 5c Alterman M, Hallberg A. J. Org. Chem. 2000; 65: 7984
    • 5d Jin F, Confalone PN. Tetrahedron Lett. 2000; 41: 3271
    • 5e Ramnauth J, Bhardwaj N, Renton P, Rakhit S, Maddaford SP. Synlett 2003; 2237
    • 5f Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
    • 5g Jensen RS, Gajare AS, Toyota K, Yoshifuji M, Ozawa F. Tetrahedron Lett. 2005; 46: 8645
    • 5h Veauthier JM, Carson CN, Collis GE, Kiplinger JL, John KD. Synthesis 2005; 2683
    • 5i Martin MT, Liu B, Cooley BE. Jr, Eaddy JF. Tetrahedron Lett. 2007; 48: 2555
    • 5j Littke A, Soumeillant M, Kaltenbach RF, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
    • 5k Buono FG, Chidambaram R, Mueller RH, Waltermire RE. Org. Lett. 2008; 10: 5325
    • 5l Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
    • 5m Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118

      For selected examples of Me3SiCN as a CN source, see:
    • 6a Chatani N, Hanafusa T. J. Org. Chem. 1986; 51: 4714
    • 6b Sundermeier M, Mutyala S, Zapf A, Spannenberg A, Beller M. J. Organomet. Chem. 2003; 684: 50

      For examples using ‘non-metallic’ CN sources, see:
    • 7a Review: Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
    • 7b Gong TJ, Xiao B, Cheng WM, Su W, Xu J, Liu ZJ, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 10630
    • 7c Yang Y, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 8677
    • 7d Wang L, Wang Y, Shen J, Chen Q, He M.-Y. Org. Biomol. Chem. 2018; 16: 4816
    • 7e Zhang T, Qiao J, Song H, Xu F, Liu X, Xu C, Ma J, Liu H, Sun Z, Chu W. New J. Chem. 2019; 43: 9084
    • 7f Iizumi K, Kurosawa MB, Isshiki R, Muto K, Yamaguchi J. Synlett 2021; 1555

      For recent reviews on C–CN cleavage, see:
    • 8a Najera C, Sansano JM. Angew. Chem. Int. Ed. 2009; 48: 2452
    • 8b Kou X, Fan J, Tong X, Shen Z. Chin. J. Org. Chem. 2013; 33: 1407
    • 9a Bollini M, Cisneros JA, Spasov KA, Anderson KS, Jorgenson WL. Bioorg. Med. Chem. Lett. 2013; 23: 5213
    • 9b Joshi S, Maikap GC, Titirmare S, Chaudhari A, Gurjar MK. Org. Process Res. Dev. 2010; 14: 657
  • 10 Fier PS, Hartwig JF. J. Am. Chem. Soc. 2014; 28: 10139
    • 11a Borza I, Kolok S, Ignácz-Szendrei G, Greiner I, Tárkányi G, Galgóczy K, Horváth C, Farkas S, Domány G. Bioorg. Med. Chem. Lett. 2005; 15: 5439
    • 11b Woodroofe CC, Meisenheimer PL, Klaubert DH, Kovic Y, Rosenberg JC, Behney CE, Southworth TL, Branchini BR. Biochemistry 2012; 51: 9807
    • 11c Kou X, Zhao M, Qiao X, Zhu Y, Tong X, Shen Z. Chem. Eur. J. 2013; 19: 16880

      For indicator strategies, see:
    • 12a Kim J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528
    • 12b Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004
  • 13 Zhu Y, Zhou M, Luo W, Li L, Shen Z. Org. Lett. 2015; 17: 2602
    • 14a Xu W, Xu Q, Li J. Org. Chem. Front. 2015; 2: 231
    • 14b Zhang G, Zhang L, Hu M, Cheng J. Adv. Synth. Catal. 2011; 353: 291
    • 14c Isobe T, Ishikawa T. J. Org. Chem. 1999; 64: 6984
    • 14d Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. RSC Adv. 2017; 7: 1484
    • 14e O’Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E, Leemans E, Boudreau MA, Yamaguchi T, Schroeder VA, Wolter WR, Llarrull LI, Song W, Lastochkin E, Kumarasiri M, Antunes NT, Espahbodi M, Lichtenwalter K, Suckow MA, Vakulenko S, Mobashery S, Chang M. J. Am. Chem. Soc. 2014; 136: 3664
    • 14f Liu Y.-Y, Liang D, Lu L.-Q, Xiao W.-J. Chem. Commun. 2019; 55: 4853
    • 14g Kawagoe Y, Moriyama K, Togo H. Eur. J. Org. Chem. 2014; 19: 4115
    • 14h Nicolaou KC, Mathison CJ. N. Angew. Chem. Int. Ed. 2005; 44: 5992
    • 14i Mudshinge SR, Potnis CS, Xu B, Hammond GB. Green Chem. 2020; 22: 4161
    • 14j Prabhu RN, Ramesh R. Tetrahedron Lett. 2017; 58: 405
    • 14k Shimojo H, Moriyama K, Togo H. Synthesis 2013; 45: 2155
    • 14l Reiner JE, Siev DV, Araldi G.-L, Cui JJ, Ho JZ, Komandla M, Mamedova L, Nolan TG, Semple JE. Bioorg. Med. Chem. Lett. 2002; 12: 1203
    • 14m Choi S, Park C.-M, Park J, Sim J, Yu E. Angew. Chem. Int. Ed. 2020; 59: 11886
    • 14n Wang Y, Huang W, Xin M, Chen P, Gui L, Zhao X, Wang J, Liu J. Bioorg. Med. Chem. 2017; 25: 75
    • 14o Zhou S, Junge K, Addis D, Das S, Beller M. Org. Lett. 2009; 11: 2461