Synlett 2022; 33(10): 988-992
DOI: 10.1055/a-1815-3619
letter

Thermodynamic-Dominated Stereoselective Gridization of Molecular Nanolinkage Based on Fluorenes

Xiao-Yan Li
,
Dong-Qing Lin
,
Yun-Shan Xu
,
Yang Li
,
Ping Zhou
,
Ai-Zhong Peng
,
Hong-Jian Wang
,
Ying Wei
,
Yong-Xia Yan
,
Wen-Jing Shi
,
Sha-Sha Wang
,
Ling-Hai Xie
This work was supported by the National Natural Science Foundation of China (21774061 and 22071112) and the Natural Science Research Project of Universities in Jiangsu Province (20KJB150038).


Abstract

The path-selectivity and stereoselectivity of gridization pathways into fluorene-based drawing hand grids (DHGs-F) are precisely modulated through tuning acid conditions and side-chain effects. BF3·OEt2 supports the realization of the gridization path (rac-DHG1-F, yield: 82%, meso-DHG1-F, yield: 11%). On the contrary, CF3SO3H will lead to the enhancements in polymerization pathways (about 85% yield). When the side chain is a methoxyl group, rac-DHG1-F and meso-DHG1-F will be obtained. However, when the side chain is a group without an oxygen atom, only rac-DHGs-F can be obtained (de = 100%). Moreover, through excitonic physical properties, rac-DHGs-F exhibits a more π-electronic delocalization, potentially serving as the intriguing tactic strategy to modulate the optoelectronic properties.

Supporting Information



Publication History

Received: 18 January 2022

Accepted after revision: 01 April 2022

Accepted Manuscript online:
01 April 2022

Article published online:
12 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Feng QY, Han YL, Yu MN, Li B, Wei Y, Xie LH, Huang W. Chin. J. Polym. Sci. 2017; 34: 1183
  • 2 Lin DQ, Wei Y, Peng AZ, Zhang H, Zhong CX, Lu D, Zhang H, Zheng XP, Yang L, Feng QY, Xie LH, Huang W. Nat. Commun. 2020; 11: 1756
  • 3 Lin DQ, Zhang WH, Yin H, Hu HX, Li Y, Zhang H, Wang L, Xie XM, Hu HK, Yan YX, Ling HF, Liu JA, Qian Y, Tang L, Wang YX, Dong CY, Xie LH, Zhang H, Wang SS, Wei Y, Guo XF, Lu D, Huang W. Research 2022; 9820585 DOI: 10.34133/2022/9820585.
  • 4 Sedghi G, Esdaile LJ, Anderson HL, Martin S, Bethell D, Higgins SJ, Nichols RJ. Adv. Mater. 2012; 24: 653
  • 5 Tsuda A, Osuka A. Science 2001; 293: 79
  • 6 Xie XM, Wei Y, Lin DQ, Zhong CX, Xie LH, Huang W. Chin. J. Chem. 2020; 38: 103
  • 7 Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H. Science 2019; 363: 151
  • 8 Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
  • 9 Diercks CS, Yaghi OM. Science 2017; 355: eaal1585
  • 10 Wu Q, Rauscher PM, Lang XL, Wojtecki RJ, De Pablo JJ, Hore MJ. A, Rowan SJ. Science 2017; 358: 1434
  • 11 Scherf U, Mullen K. Makromol. Chem., Rapid Commun. 1991; 12: 489
  • 12 Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
  • 13 Wei Y, Feng QY, Liu H, Wang XL, Lin DQ, Xie SL, Yi MD, Xie LH, Huang W. Eur. J. Org. Chem. 2018; 7009
  • 14 Boinski T, Szumna A. Tetrahedron 2012; 68: 9419
  • 15 Evans NH. Eur. J. Org. Chem. 2019; 3320
  • 16 McIldowie MJ, Mocerino M, Skelton BW, White AH. Org. Lett. 2000; 2: 3869
  • 17 Alfonso I, Bolte M, Bru M, Burguete MI, Luis SV, Rubio J. J. Am. Chem. Soc. 2008; 130: 6137
  • 18 Wang YL, Xu KD, Li B, Cui L, Li J, Jia XS, Zhao HB, Fang JH, Li CJ. Angew. Chem. Int. Ed. 2019; 58: 10281
  • 19 Guillier K, Caytan E, Dorcet V, Mongin F, Dumont É, Chevallier F. Angew. Chem. Int. Ed. 2019; 58: 14940
  • 20 Yamada S, Tokugawa Y. J. Am. Chem. Soc. 2009; 131: 2098
  • 21 Yang Y, Zhao JF, Liu RR, Li JW, Yi MD, Xie GH, Xie LH, Chang YZ, Yin CR, Zhou XH, Zhao Y, Qian Y, Huang W. Tetrahedron 2013; 69: 6317
  • 22 Zhang GW, Xiang JY, Zhong TT, Zhi XR, Gao C, Huang W, Yuan S, Xie LH, Huang W. New J. Chem. 2021; 45: 6796
  • 23 Wei Y, Li Y, Lin DQ, Jin D, Du X, Zhong CX, Zhou P, Sun Y, Xie LH, Huang W. Org. Biomol. Chem. 2021; 19: 10408
  • 24 Zhang GW, Wei Y, Wang JS, Liu YY, Xie LH, Wang L, Ren BY, Huang W. Mater. Chem. Front. 2017; 1: 455
  • 25 Sun SX, Ou CJ, Lin DQ, Zuo ZY, Yan Y, Wei Y, Liu YY, Xie LH, Huang W. Tetrahedron 2018; 74: 5833
  • 26 Yu Y, BianL Y, Zhang Y, Zheng L, Li YT, Zhang R, Ju RL, Yin CZ, Yang L, Yi MD, Xie LH, Huang W. ACS Omega 2019; 4: 5863
  • 27 Zhang H, Lin DQ, Li B, Liu HF, Wang SS, Wang YX, Sun ML, Lin ZQ, Yan Y, Yu MN, Xie LH, Huang W. J. Phys. Chem. C 2021; 125: 6249
  • 28 Synthesis of DHG1-F The compound DHG1-F was prepared by using MC1 (0.200 g, 0.415 mmol), BF3·Et2O (10 equiv) dissolved in 83.2 mL DCM. The reaction mixture was stirred at r.t. for 15 min, quenched with KOH aqueous solution. The mixture was extracted over three times with DCM, the organic layer was dried over MgSO4, filtered, and the solvent was removed under reduced pressure. Purification by silica gel column chromatography (petroleum ether–DCM = 1:1) to afford rac-DHG1-F (0.134 g, 70%) and meso-DHG1-F (0.037 g, 19%) as white powders. MALDI-TOF-MS: m/z calcd for C68H50N2O2: 926.39 [M+]; found: 926.68. rac-DHG1-F: 1H NMR (400 MHz, CDCl3): δ = 8.66 (s, 2 H), 8.39 (s, 2 H), 8.11 (s, 2H), 7.74–7.72 (d, J = 8.0 Hz, 2 H), 7.50–7.48 (d, J = 7.6 Hz, 2 H), 7.44–7.40 (m, 4 H), 7.35–7.29 (m, 6 H), 7.17–7.14 (d, J = 8.4 Hz, 6 H), 6.98–6.95 (d, J = 8.8 Hz, 3 H), 6.74–6.72 (d, J = 8.8 Hz, 3 H), 6.56–6.54 (d, J = 8.0 Hz, 2 H), 3.70 (s, 6 H), 3.48 (4 H), 1.26 (6 H). 13C NMR (100 MHz, CDCl3): δ = 158.3, 152.2, 151.7, 140.3, 139.9, 139.5, 139.3, 139.2, 138.2, 135.6, 129.7, 128.9, 127.1, 126.8, 124.2, 124.1, 124.0, 123.8, 123.6, 122.6, 122.1, 120.6, 119.9, 116.4, 113.8, 108.1, 106.9, 65.1, 55.0, 36.6, 13.3. MALDI-TOF-MS: m/z calcd. For C68H50N2O2: 926.39 [M+]; found: 926.68. meso-DHG1-F: 1H NMR (400 MHz, CDCl3): δ = 8.75 (s, 2 H), 8.32 (s, 2 H), 7.97 (s, 2 H), 7.86–7.80 (m, 4 H), 7.67–7.63 (t, J = 6.4 Hz, 4 H), 7.59–7.56 (d, J = 8.5 Hz, 2 H), 7.53–7.51 (d, J = 7.2 Hz, 2 H), 7.46–7.40 (dd, J = 14.6, 8.7 Hz, 4 H), 7.36–7.33 (t, J = 8.3 Hz, 2 H), 7.30–7.28 (d, J = 7.0 Hz, 2 H), 6.75–6.73 (d, J = 8.9 Hz, 4 H), 6.57–6.55 (d, J = 10.2 Hz, 4 H), 4.41–4.35 (q, J = 8.4 Hz, 4 H), 3.63 (s, 6 H), 1.44–1.42 (t, J = 6.4 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 151.7, 139.9, 139.3, 133.9, 129.1, 127.4, 126.7, 126.2, 123.3, 121.6, 119.8, 113.3, 108.2, 107.4, 64.1, 55.1, 37.7, 13.8. MALDI-TOF-MS: m/z calcd for C68H50N2O2: 926.39 [M+]; found: 926.56.