Synlett 2022; 33(10): 959-964
DOI: 10.1055/a-1823-1821
letter

Metal-Free Synthesis of 1,3-Dioxane Derivatives from Aromatic Alkynes and Paraformaldehyde

Xin Hu
,
Man-Hua Ding
,
Fei Zeng
The National Natural Science Foundation of China (21602055) and the Natural Science Foundation of Hunan Province (2017JJ3094).


Abstract

Here we report the efficient synthesis of a series of 1,3-dioxane derivatives from aromatic alkynes, paraformaldehyde, and a Lewis acid catalyzed reaction at room temperature. This reaction is metal-free and atom-economic. Single crystals of two typical 1,3-dioxane derivatives are obtained. A mechanism that the reaction proceeds through a six- or eight-membered ring intermediate is proposed.

Supporting Information



Publication History

Received: 07 February 2022

Accepted after revision: 12 April 2022

Accepted Manuscript online:
12 April 2022

Article published online:
29 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Comprehensive Heterocyclic Chemistry III . Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008
    • 1b Quin LD, Tyrell J. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals. John Wiley & Sons; New York: 2010
    • 1c He Q, Yin ZQ, Chen HB, Zhang ZM, Wang XX, Yue GZ. Prog. Chem. 2016; 28: 801
    • 1d Cabrele C, Reiser O. J. Org. Chem. 2016; 81: 10109
    • 1e Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 1f Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 1g Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 1h Huang Y, Zhu Y. Synthesis 2020; 52: 1181
    • 3a Chan K.-P, Ling YH, Loh T.-P. Chem. Commun. 2007; 43: 939
    • 3b Schmidt M, Ungvari J, Glode J, Dobner B, Langner A. Bioorg. Med. Chem. 2007; 15: 2283
    • 3c Marucci G, Piero A, Brasili L, Buccioni M, Giardina D, Gulini U, Piergentili A, Sagratini G. Med. Chem. Res. 2005; 14: 274
    • 4a Arundale E, Mikeska LA. Chem. Rev. 1952; 51: 505
    • 4b Yang NC, Yang DH, Ross CB. J. Am. Chem. Soc. 1959; 81: 133
    • 4c Fuson RC, Ross WE, McKeever CH. J. Am. Chem. Soc. 1938; 60: 2935
    • 4d Aramendía MA, Borau V, Jiménez C, Marinas JM, Romero FJ, Urbano F. Catal. Lett. 2001; 73: 203
  • 5 Yadav JS, Reddy BV. S, Bhaishya G. Green Chem. 2003; 5: 264
  • 6 Wang W, Shao L, Cheng W, Yang J, He M. Catal. Commun. 2008; 9: 337
  • 7 Gu Y, Karam A, Jérôme F, Barrault J. Org. Lett. 2007; 9: 3145
  • 8 Yadav JS, Reddy BV. S, Gopal AV. H, Kumar GG. K. S. N, Madavi C, Kunwar AC. Tetrahedron Lett. 2008; 49: 4420
  • 9 Zhang W, Leng Y, Zhao P, Wang J, Zhu D, Huang J. Green Chem. 2011; 13: 832
  • 10 Tobiasz P, Poterata M, Jaskowska E, Krawczyk H. RSC Adv. 2018; 8: 30678
    • 11a Nevado C, Echavarren AM. Synthesis 2005; 167
    • 11b Kitamura T. Eur. J. Org. Chem. 2009; 1111
    • 11c Bausch CC, Patman RL, Breit B, Krische MJ. Angew. Chem. Int. Ed. 2011; 50: 5687
    • 11d Rodini DJ, Snider BB. Tetrahedron Lett. 1980; 21: 3857
    • 12a Li W, Wu X.-F. Adv. Synth. Catal. 2015; 357: 3393
    • 12b Wang Z. In Comprehensive Organic Name Reactions and Reagents . John Wiley & Sons; Hoboken: 2010: 132
    • 12c Colby DA, Lash TD. J. Org. Chem. 2002; 67: 1031
    • 12d Strategic Applications of Named Reactions in Organic Synthesis . Kürti L, Czakó B. Elsevier Academic Press; London: 2005: 154
  • 13 1H NMR, 13C NMR spectra were recorded on a Bruker DMX400 NMR spectrometer. The solvent signal of CDCl3 was referenced at δ = 7.26 ppm. Coupling constants (J values) are reported in Hz. 1H NMR data were recorded in the order as follows: chemical shift value, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad), number of protons that gave rise to the signal and coupling constant where applicable. 13C spectra were proton-decoupled and recorded on Bruker ACF400 (400 MHz). The solvent, CDCl3, was referenced at δ = 77 ppm. CDCl3 (99.8% deuterated) was purchased from Aldrich and used without further purification. High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Scientific ExactiveTM spectrometer. CCDC: 2047024 for 2a; CCDC: 2047025 for 2b; CCDC: 2131310 for 2d and 2d′. Synthesis of 2a To a solution of 1,2-diphenylethyne (1a, 0.5 mmol) in CH2Cl2 (10 mL) were sequentially added 100 mol% of BF3·Et2O and 3.0 equiv of (CH2O) n . Then the reaction mixture was allowed to stir at room temperature for 6 h. The mixture was poured into ice water, and the product was extracted with CH2Cl2. The combined organic layers were washed with saturated aqueous sodium chloride solution, dried over Na2SO4, filtered, and the solvents were removed under reduced pressure. The residue was purified by flash column chromatography (silica gel, PE/EtOAc = 6:1) to give the 2a. Characterization Data of 2a–i Compound 2a: yield 91%; 122 mg; yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.45–7.38 (m, 6 H), 7.30–7.26 (m, 4 H), 4.96 (d, J = 5.9 Hz, 1 H), 4.85 (d, J = 6.0 Hz, 1 H), 4.70 (d, J = 11.5 Hz, 2 H), 4.21 (d, J = 11.6 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 200.71, 137.36, 136.82, 131.97, 129.48, 128.73, 128.30, 128.11, 126.59, 94.08, 77.33, 77.22, 77.02, 76.70, 72.89, 53.88. HRMS: m/z calcd for C17H16O3 [M + H]+: 269.1178; found: 269.1183. Compound 2b: yield 82%; 112 mg; yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.41–7.19 (m, 7 H), 7.06 (d, J = 8.0 Hz, 2 H), 4.92 (d, J = 5.9 Hz, 1 H), 4.85 (d, J = 5.9 Hz, 1 H), 4.65 (d, J = 11.5 Hz, 2 H), 4.24 (d, J = 11.5 Hz, 2 H), 2.30 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 200.01, 142.84, 137.92, 133.85, 130.21, 129.42, 129.11, 129.00, 128.92, 128.73, 128.28, 127.98, 126.70, 126.39, 94.06, 77.42, 77.11, 76.79, 73.05, 53.75. HRMS: m/z calcd for C18H18O3 [M + H]+: 283.1334; found: 283.1349. Compound 2c: yield 71%; 106 mg; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.51 (d, J = 9.0 Hz, 2 H), 7.48–7.37 (m, 4 H), 6.99 (d, J = 9.0 Hz, 1 H), 6.76 (d, J = 9.0 Hz, 2 H), 4.91 (d, J = 6.9 Hz, 2 H), 4.62 (d, J = 11.6 Hz, 2 H), 4.29 (d, J = 11.6 Hz, 2 H), 3.78 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 198.49, 162.65, 138.39, 131.51, 131.13, 129.38, 128.79, 127.87, 127.05, 126.81, 126.73, 124.61, 114.04, 113.53, 94.04, 77.34, 77.22, 77.02, 76.70, 73.19, 68.30, 68.05, 55.56, 55.37, 53.51, 45.93. HRMS: m/z calcd for C18H18O4 [M + H]+: 299.1283; found: 299.1198. Compound 2d: yield 68%; 97 mg; yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.52–7.46 (m, 1 H), 7.46–7.33 (m, 5 H), 7.29–7.27 (m, 1 H), 7.12 (t, J = 8.7 Hz, 1 H), 6.98–6.92 (m, 1 H), 4.96 (d, J = 6.0 Hz, 1 H), 4.92 (d, J = 6.0 Hz, 1 H), 4.88 (d, J = 6.0 Hz, 1 H), 4.85 (d, J = 6.0 Hz, 1 H), 4.68 (d, J = 11.6 Hz, 1 H), 4.60 (d, J = 11.6 Hz, 1 H), 4.22 (t, J = 11.3 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 200.42, 198.97, 166.05, 163.52, 137.30, 136.48, 132.86, 132.83, 132.21, 131.53, 131.44, 129.58, 128.74, 128.61, 128.53, 128.39, 128.24, 126.51, 116.56, 116.34, 115.56, 115.35, 94.10, 94.06, 72.91, 72.89, 53.87, 53.21. HRMS: m/z calcd for C17H15FO3 [M + H]+: 287.1083; found: 287.1091. Compound 2e: yield 67%; 102 mg; yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.45–7.36 (m, 6 H), 7.33–7.25 (m, 3 H), 4.97 (d, J = 6.0 Hz, 1 H), 4.92–4.86 (m, 1 H), 4.84 (d, J = 6.0 Hz, 1 H), 4.69 (d, J = 11.5 Hz, 1 H), 4.57 (d, J = 11.7 Hz, 1 H), 4.25 (d, J = 11.7 Hz, 1 H), 4.18 (d, J = 11.6 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 200.13, 199.46, 138.35, 137.02, 136.42, 136.30, 134.99, 134.13, 132.33, 130.22, 129.64, 129.61, 128.78, 128.63, 128.43, 128.31, 128.28, 126.47, 94.11, 94.04, 72.82, 72.77, 53.97, 53.29. HRMS: m/z calcd for C17H15ClO3 [M + H]+: 303.0788; found: 303.0797. Compound 2f: yield 79%; 136 mg; yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.58–7.53 (m, 1 H), 7.47–7.39 (m, 3 H), 7.38–7.27 (m, 4 H), 4.97 (d, J = 6.0 Hz, 1 H), 4.89 (s, 1 H), 4.83 (d, J = 6.0 Hz, 1 H), 4.69 (d, J = 11.5 Hz, 1 H), 4.56 (d, J = 11.7 Hz, 1 H), 4.25 (d, J = 11.7 Hz, 1 H), 4.17 (d, J = 11.6 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 200.05, 199.67, 136.99, 136.26, 135.45, 132.59, 132.36, 131.61, 130.31, 129.61, 128.79, 128.61, 128.44, 128.32, 126.96, 126.46, 122.29, 94.11, 94.04, 72.78, 72.75, 53.99, 53.35. HRMS: m/z calcd for C17H15BrO3 [M + H]+: 347.0283; found: 347.0291. Compound 2g: yield 36%; 53 mg; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.77–7.68 (m, 2 H), 7.70–7.61 (m, 2 H), 7.52–7.38 (m, 3 H), 7.30 (t, J = 7.8 Hz, 2 H), 4.97 (d, J = 6.0 Hz, 1 H), 4.84 (d, J = 6.0 Hz, 1 H), 4.43 (q, J = 11.6 Hz, 4 H). 13C NMR (101 MHz, CDCl3): δ = 199.06, 144.11, 135.56, 133.01, 132.87, 128.88, 128.61, 128.17, 118.33, 111.91, 94.03, 72.74, 53.70. HRMS: m/z calcd for C18H15NO3 [M + H]+: 294.1130; found: 294.1135. Compound 2h: yield 78%; 122 mg; yellow solid. 1H NMR (400 MHz, CDCl3): δ = 8.35–8.23 (m, 2 H), 7.83–7.68 (m, 2 H), 7.52–7.39 (m, 3 H), 7.38–7.27 (m, 2 H), 5.00 (d, J = 6.0 Hz, 1 H), 4.84 (d, J = 6.0 Hz, 1 H), 4.46 (s, 4 H). 13C NMR (101 MHz, CDCl3): δ = 198.88, 147.34, 146.27, 135.41, 132.98, 128.93, 128.65, 128.44, 124.39, 94.05, 72.81, 53.70. HRMS: m/z calcd for C17H15NO5 [M + H]+: 314.1028; found: 314.1021. Compound 2i: yield 60%; 98 mg; white solid. 1H NMR (400 MHz, CDCl3): δ = 8.15–8.03 (m, 2 H), 7.62–7.49 (m, 2 H), 7.42 (d, J = 7.2 Hz, 3 H), 7.28 (dd, J = 6.2, 5.3 Hz, 2 H), 4.91 (s, 2 H), 4.59 (d, J = 11.7 Hz, 2 H), 4.32 (d, J = 11.7 Hz, 2 H), 3.92 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 199.81, 166.54, 143.07, 136.16, 132.42, 130.57, 129.79, 128.79, 128.44, 127.02, 94.05, 72.77, 53.90, 52.27. HRMS: m/z calcd for C19H18O5 [M + H]+: 327.1232; found: 327.1239.