Synlett 2023; 34(07): 850-854
DOI: 10.1055/a-1921-7296
cluster
Chemical Synthesis and Catalysis in India

Ring-Rearrangement Metathetic Approach to Fused 6/5/6/5/6-Oxacyclic Ring System and Bipentalene Derivatives

Sambasivarao Kotha
,
Kunkumita Jena
Funded by the Council of Scientific and Industrial Research, CSIR, New Delhi (02(0272)/16/EMR-II).


Abstract

We have developed a useful synthetic route to a 6/5/6/5/6-oxacyclic ring system and bipentalene derivatives from dimeric 7-oxonorbornene derivatives by using ring-rearrangement metathesis as a key step. This method provides access to fused oxacycles containing eight stereogenic centers in just three steps and to bipentalene derivatives in two steps only.

Supporting Information



Publication History

Received: 20 June 2022

Accepted after revision: 09 August 2022

Accepted Manuscript online:
09 August 2022

Article published online:
11 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Stonik VA. Acta Naturae 2009; 1: 15
    • 2a Kadota I, Yamamoto Y. Acc. Chem. Res. 2005; 38: 423
    • 2b Oguri H, Hirama M, Tsumuraya T, Fujii I, Maruyama M, Uehara H, Nagumo Y. J. Am. Chem. Soc. 2003; 125: 7608
    • 2c Klayman DL. Science 1985; 228: 1049
    • 3a Miyamoto T, Kodama K, Aramaki Y, Higuchi R, Van Soest RW. M. Tetrahedron Lett. 2001; 42: 6349
    • 3b Zhou W, Lui B. Tetrahedron Lett. 2002; 43: 4187
  • 4 Tian H.-Y, Wang L, Zhang X.-Q, Wang Y, Zhang D.-M, Jiang R.-W, Liu Z, Liu J.-S, Li Y.-L, Ye W.-C. Chem. Eur. J. 2010; 16: 10989
    • 5a Liu YF, Yu S.-S. J. Asian Nat. Prod. Res. 2019; 21: 1129
    • 5b Zhang W, Zhang G, Zhang L, Liu W, Jiang X, Jin H, Liu Z, Zhang H, Zhou A, Zhang C. Tetrahedron 2018; 74: 6839
  • 6 Su J.-H, Lin F.-Y, Huang H.-C, Dai C.-F, Wu Y.-C, Hu W.-P, Hsu C.-H, Sheu J.-H. Tetrahedron 2007; 63: 703
  • 7 Liu H.-X, Tan H.-B, Chen Y.-C, Li S.-N, Li H.-H, Zhang W.-N. Nat. Prod. Res. 2020; 17: 2430
  • 8 Nohara T, Kashiwada Y, Nishioka I. Phytochemistry 1985; 24: 1849
  • 9 Stellfeld T, Bhatt U, Kalesse M. Org. Lett. 2004; 6: 3889
    • 11a Calderon N, Chen HY, Scott KW. Tetrahedron Lett. 1967; 3327
    • 11b Calderon N. Acc. Chem. Res. 1972; 5: 127
    • 11c Grubbs RH, Carr DD, Hoppin C, Burk PL. J. Am. Chem. Soc. 1976; 98: 3478
    • 11d Grubbs RH, Burk PL, Carr DD. J. Am. Chem. Soc. 1975; 97: 3265
    • 11e Katz TJ, Rothchild R. J. Am. Chem. Soc. 1976; 98: 2519
  • 12 Handbook of Metathesis, 2nd ed. Grubbs R H, Wenzel AG. Wiley-VCH; Weinheim: 2015
    • 13a Kotha S, Keesari RR. J. Org. Chem. 2021; 86: 17129
    • 13b Kotha S, Sreenivasachary N, Mohanraja K, Durani S. Bioorg. Med. Chem. Lett. 2001; 11: 1421
    • 13c Kotha S, Waghule GT. J. Org. Chem. 2012; 77: 6314
    • 13d Kotha S, Meshram M, Khedkar P, Banerjee S, Deodhar D. Beilstein J. Org. Chem. 2015; 11: 1833
    • 13e Kotha S, Shirbhate ME, Waghule GT. Beilstein J. Org. Chem. 2015; 11: 1274
    • 13f Bose S, Ghosh M, Ghosh S. J. Org. Chem. 2012; 77: 6345
    • 13g Holub N, Blechert S. Chem. Asian J. 2007; 2: 1064
  • 14 Kotha S, Pulletikurti S, Fatma A, Dhangar G, Naidu GS. Synthesis 2021; 53: 1931
    • 15a Garcia JG, Fronczek FR, McLaughlin ML. Tetrahedron Lett. 1991; 32: 3289
    • 15b Garcia JG, McLaughlin ML. Tetrahedron Lett. 1991; 32: 3293
  • 16 Khan FA, Parasuraman K. Beilstein J. Org. Chem. 2010; 6: 64
  • 17 Newcomer JS, McBee ET. J. Am. Chem. Soc. 1948; 71: 946
  • 19 Fürstner A, Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
  • 20 Kotha, S.; Jena. K. unpublished results.
  • 21 CCDC 2175968, 2176027, and 2175972, contain the supplementary crystallographic data for compounds 10, 16, and 18. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 22 Bipentalene Derivatives; General ProcedureA magnetically stirred solution of the RRM precursor in anhyd CH2Cl2 was degassed by sequential purging with N2 and ethylene gas for about 10 min each. The Grubbs catalyst was added in one portion at rt under C2H2 at 1 atm, and purging was continued for another 2–5 min. The mixture was stirred at the appropriate temperature under C2H2 until the reaction was complete (TLC). The crude product was purified by column chromatography (silica gel, EtOAc–PE).3,3′-Divinyl-2,2′,3,3′,4,4′,6a,6a′-octahydro-1,1′-bipentalene-3a,3a′(1H,1′H)-diol (12a)Colorless liquid; yield: 65%. 1H NMR (500 MHz, CDCl3): δ = 5.93–5.86 (m, 2 H), 5.69–5.68 (m, 2 H), 5.63–5.61 (m, 2 H), 5.12–5.06 (m, 4 H), 2.91–2.90 (m, 2 H), 2.69–2.65 (m, 2 H), 2.60–2.55 (m, 2 H), 2.19–2.15 (m, 2 H), 1.95–1.91 (m, 2 H), 1.85–1.81 (m, 2 H), 1.86–1.71 (m, 2 H), 1.10–1.07 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 137.7, 130.4, 129.3, 116.1, 90.0, 60.8, 55.2, 44.5, 43.0, 34.6. HRMS (ESI, Q-ToF): m/z [M + Na]+ calcd for C20H26NaO2: 321.1825; found: 321.1823.3a,3a′-Dimethoxy-3,3′-divinyl-1,1′,2,2′,3,3′,3a,3a′,4,4′,6a,6a′-dodecahydro-1,1′-bipentalene (17)Yellow liquid; yield: 60%. 1H NMR (500 MHz, CDCl3): δ = 5.94–5.48 (m, 6 H), 5.15–5.03 (m, 4 H), 3.25 (s, 3 H), 3.20 (s, 3 H), 3.11–3.06 (m, 2 H), 2.84–2.68 (m, 2 H), 2.49–2.31 (m, 4 H), 2.19–1.88 (m, 4 H), 1.17–1.06 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 138.5, 135.6, 133.8, 130.8, 130.3, 127.4, 117.3, 115.5, 97.9, 95.4, 54.7, 54.6, 53.9, 51.3, 51.2, 50.9, 44.6, 42.7, 38.9, 36.8, 34.5, 34.3. HRMS (ESI, Q-ToF): m/z [M + H]+ calcd for C22H31O2: 327.4800; found: 327.4805.