Synthesis 2022; 54(24): 5461-5470
DOI: 10.1055/a-1933-3709
paper

Efficient Catalyst-Free Henry Reaction between Nitroalkanes and Aldehydes or Trifluoromethyl Ketones Promoted by Tap Water

Zhi-Hong Du
a   School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832003, P. R. of China
,
Meng Yuan
b   Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
,
Bao-Xiu Tao
b   Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
,
Tie-Ying Ding
b   Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
,
Chao-Shan Da
b   Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. of China
› Author Affiliations


Abstract

The first examples of highly effective Henry reactions between nitroalkanes and aldehydes or trifluoromethyl ketones that proceed under catalyst-free and additive-free conditions, in a recyclable tap water medium, and at room temperature are reported. This process tolerates a broad range of aldehydes and trifluoromethyl ketones to give a series of β-nitro alcohol products in excellent yields. Such products are widely used in the syntheses of pharmaceutical intermediates and natural products. This protocol can be successfully scaled up to a 50-mmol scale without a reduction in yield. Tap water from different locations in China exhibited pH values ranging from 7.5 to 8.1, but the varying pH had no effect on the yield and the processes were successfully reproduced. Finally, the tap water was effectively recovered and reused without any postprocessing, even when the reaction substrates were different.

Supporting Information



Publication History

Received: 10 July 2022

Accepted after revision: 30 August 2022

Accepted Manuscript online:
30 August 2022

Article published online:
28 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For recent reviews on green chemistry, see:
    • 1a Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science 2020; 367: 397
    • 1b Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 1c Horváth IT, Anastas PT. Chem. Rev. 2007; 107: 2167

      For recent reviews about organic reactions in water or on water, see:
    • 2a Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
    • 2b Zhou F, Li C.-J. Chem. Sci. 2019; 10: 34
    • 2c Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
    • 2d Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
    • 2e Blackmond DG, Armstrong A, Coombe V, Wells A. Angew. Chem. Int. Ed. 2007; 46: 3798
    • 2f Hayashi Y. Angew. Chem. Int. Ed. 2006; 45: 8103
    • 2g Li C.-J. Chem. Rev. 2005; 105: 3095
    • 2h Lai G, Guo F, Zheng Y, Fang Y, Song H, Xu K, Wang S, Zha Z, Wang Z. Chem. Eur. J. 2011; 17: 1114
  • 3 Andraos J. Org. Process Res. Dev. 2012; 16: 1482

    • References about tap water used as a reaction medium are sporadic; see:
    • 4a Tang BZ, Poon WH, Leung SM, Leung WH, Peng H. Macromolecules 1997; 30: 2209
    • 4b Wang Z, Zha Z, Zhou C. Org. Lett. 2002; 4: 1683
    • 4c SaiPrathima P, Srinivas K, Rao MM. Green Chem. 2015; 17: 2339
    • 4d Nagaraju S, Satyanarayana N, Paplal B, Vasu AK, Kanvah S, Kashinath D. RSC Adv. 2015; 5: 81768
    • 4e Kumar N, Kaur J, Kumar A, Islam N, Chimni SS. Asian J. Org. Chem. 2016; 5: 1334

      For references on nitro alcohol utility in organic synthesis, see:
    • 5a Rao DH. S, Chatterjee A, Padhi SK. Org. Biomol. Chem. 2021; 19: 322
    • 5b Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Russ. Chem. Rev. 2020; 89: 1
    • 5c Pankaj G, Neha M. New J. Chem. 2018; 42: 12296
    • 5d Métro T.-X, Duthion B, Pardo DG, Cossy J. Chem. Soc. Rev. 2010; 39: 89
    • 5e Klingler FD. Acc. Chem. Res. 2007; 40: 1367

      For recent reviews on the Henry reaction, see:
    • 6a Luzzio FA. Tetrahedron 2001; 57: 915
    • 6b Palomo C, Oiarbide M, Laso A. Eur. J. Org. Chem. 2007; 2561
    • 6c Ballini R, Barboni L, Fringuelli F, Palmieri A, Pizzo F, Vaccaro L. Green Chem. 2007; 9: 823
    • 6d Milner SE, Moody TS, Maguire AR. Eur. J. Org. Chem. 2012; 3059
    • 6e Murugavel G, Sadhu P, Punniyamurthy T. Chem. Rec. 2016; 16: 1906
    • 6f Saranya S, Harry NA, Ujwaldev SM, Anilkumar G. Asian J. Org. Chem. 2017; 6: 1349
    • 6g Zhang S, Li Y, Xu Y, Wang Z. Chin. Chem. Lett. 2018; 29: 873
    • 6h Dong L, Chen F.-E. RSC Adv. 2020; 10: 2313
    • 6i Cirujano FG, Luque R, Dhakshinamoorthy A. Molecules 2021; 26: 1445
    • 6j Das D, Pathak G, Rokhum L. RSC Adv. 2016; 6: 104154
    • 7a Zhang Y, Wei BW, Lin H, Zhang L, Liu JX, Luo HQ, Fan XL. Green Chem. 2015; 17: 3266
    • 7b Yamada T, Kuwata M, Takakura R, Monguchi Y, Sajiki H, Sawama Y. Adv. Synth. Catal. 2018; 360: 637
    • 8a Ballini R, Bosica G. J. Org. Chem. 1997; 62: 425
    • 8b Ballini R, Fiorini D, Gil MV, Palmieri A. Tetrahedron 2004; 60: 2799
  • 9 Bora PP, Bez G. Eur. J. Org. Chem. 2013; 2922

    • For references on macrobiomolecules as catalysts to promote aqueous Henry reactions, see:
    • 10a Fan J, Sun G, Wan C, Wang Z, Li Y. Chem. Commun. 2008; 3792
    • 10b Busto E, Gotor-Fernández V, Gotor V. Org. Process Res. Dev. 2011; 15: 236
    • 10c Le ZG, Guo LT, Jiang GF, Yang XB, Liu HQ. Green Chem. Lett. Rev. 2013; 6: 277
    • 10d Gao N, Chen LY, He YH, Guan Z. RSC Adv. 2013; 3: 16850
    • 10e Matsumoto K, Asakura S. Tetrahedron Lett. 2014; 55: 6919
    • 10f Häring M, Pérez-Madrigal MM, Kühbeck D, Pettignano A, Quignard F, Díaz Díaz D. Molecules 2015; 20: 4136
    • 10g Häring M, Pettignano A, Quignard F, Tanchoux N, Díaz Díaz D. Molecules 2016; 21: 1122
    • 10h Tian X, Zhang S, Zheng L. J. Microbiol. Biotechnol. 2016; 26: 80

      For references on metal complexes as catalysts to promote aqueous Henry reactions, see:
    • 11a Reddy KR, Rajasekhar CV, Krishna GG. Synth. Commun. 2007; 37: 1971
    • 11b Jammi S, Punniyamurthy T. Eur. J. Inorg. Chem. 2009; 2508
    • 11c Karmakar A, Hazra S, da Silva MF. C. G, Pombeiro AJ. L. New J. Chem. 2014; 38: 4837
    • 11d Karmakar A, Hazra S, da Silva MF. C. G, Paul A, Pombeiro AJ. L. CrystEngComm 2016; 18: 1337

      For recent references on application of trifluoromethyl tert-alcohol containing compounds in drugs, see:
    • 12a Ducharme Y, Blouin M, Brideau C, Chateauneuf A, Gareau Y, Grimm EL, Juteau H, Laliberte S, MacKay B, Massé F, Ouellet M, Salem M, Styhler A, Friesen RW. ACS Med. Chem. Lett. 2010; 1: 170
    • 12b Handlon AL, Schaller LT, Leesnitzer LM, Merrihew RV, Poole C, Ulrich JC, Wilson JW, Cadilla R, Turnbull P. ACS Med. Chem. Lett. 2016; 7: 83
    • 12c Ng RA, Lanter JC, Alford VC, Allan GF, Sbriscia T, Lundeen SG, Sui Z. Bioorg. Med. Chem. Lett. 2007; 17: 1784
    • 12d Ozoe Y, Asahi M, Ozoe F, Nakahira K, Mita T. Biochem. Biophys. Res. Commun. 2010; 391: 744
    • 12e Wang H, Yang K.-F, Li L, Bai Y, Zheng Z.-J, Zhang W.-Q, Gao Z.-W, Xu L.-W. ChemCatChem 2014; 6: 580
    • 12f Kasztelan A, Biedrzycki M, Kwiatkowski P. Adv. Synth. Catal. 2016; 358: 2962
    • 12g Zheng Y, Ma H, Ma J.-A. Chin. J. Chem. 2016; 34: 511
    • 12h Wang P, Li H.-F, Zhao J.-Z, Du Z.-H, Da C.-S. Org. Lett. 2017; 19: 2634
    • 12i Thomson CJ, Barber DM, Dixon DJ. Angew. Chem. Int. Ed. 2020; 59: 5359

      For recent references on nitroalkane addition to trifluoromethyl ketones, see:
    • 13a Tur F, Saá JM. Org. Lett. 2007; 9: 5079
    • 13b Bandini M, Sinisi R, Umani-Ronchi A. Chem. Commun. 2008; 4360
    • 13c Saá JM, Tur F, González J. Chirality 2009; 21: 836
    • 13d Xu HH, Wolf C. Chem. Commun. 2010; 46: 8026
    • 13e Palacio C, Connon SJ. Org. Lett. 2011; 13: 1298
    • 13f Vlatković M, Bernardi L, Otten E, Feringa BL. Chem. Commun. 2014; 50: 7773
    • 13g Das A, Choudhary MK, Kureshy RI, Jana K, Verma S, Khan NH, Abdi SH. R, Bajaj HC, Ganguly B. Tetrahedron 2015; 71: 5229
    • 13h Karasawa T, Kumagai N, Shibasaki M. Org. Lett. 2018; 20: 308
    • 13i Otevrel J, Svestka D, Bobal P. Org. Biomol. Chem. 2019; 17: 5244
    • 13j Meng X, Luo Y, Zhao G. Tetrahedron Lett. 2020; 61: 152485
  • 14 Baruaha B, Deb ML. Org. Biomol. Chem. 2021; 19: 1191
  • 15 Panov I, Drabina P, Hanusek J, Sedlák M. Synlett 2013; 24: 1280
  • 16 Gogoi N, Boruwa J, Barua NC. Tetrahedron Lett. 2005; 46: 7581
    • 17a Blay G, Domingo LR, Hernández-Olmos V, Pedro JR. Chem. Eur. J. 2008; 14: 4725
    • 17b Otevrel J, Bobal P. J. Org. Chem. 2017; 82: 8342
  • 18 Hayashi K, Watanabe T, Toyama K, Kamon J, Minami M, Uni M, Nasu M. (Nissan Chemical Industries, Ltd.) WO 2013024895, 2013; 158, 359769
  • 19 Tang L.-W, Zhao B.-J, Dai L, Zhang M, Zhou Z.-M. Chem. Asian J. 2016; 11: 2470