Synthesis 2023; 55(05): 786-798
DOI: 10.1055/a-1947-5871
paper

Thermally Activated Aryl Thioureas as Brønsted Acid Catalysts for C–C Bond Forming Reactions: Synthesis of Symmetrical Trisubstituted Methanes

Achinta Gogoi
,
Grace Basumatary
,
Ghanashyam Bez


Abstract

A study on relative catalytic efficacy of 1,3-diaryl thioureas has revealed that 1-[3,5-bis(trifluoromethyl)phenyl]-3-phenylthiourea is an efficient alternative to the Schreiner’s thiourea catalyst (STC) for acid-catalyzed activation of carbonyl compounds in the synthesis of symmetrical trisubstituted methanes (TRSMs) at an elevated temperature. Since the preparation of STC involves the use of toxic thiophosgene, the 1-[3,5-bis(trifluoromethyl)phenyl]-3-phenylthiourea represents an easily accessible and simpler alternative. Strikingly, the temperature-assisted reaction showed significantly shorter reaction time in comparison to photoirradiation in the thiourea-catalyzed Friedel–Crafts type reaction of indole with aldehydes. Simple reaction set-up and excellent yields are some of the highlights of the reported method.

Supporting Information



Publication History

Received: 11 July 2022

Accepted after revision: 20 September 2022

Accepted Manuscript online:
20 September 2022

Article published online:
03 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Guo Q, Bhanushali M, Zhao CG. Angew. Chem. Int. Ed. 2010; 49: 9460
  • 2 Yuan HN, Wang S, Nie J, Mang W, Yao Q, Ma JA. Angew. Chem. Int. Ed. 2013; 52: 3869
  • 3 Tsogoeva SB, Wei S. Chem. Commun. 2006; 13: 1451
  • 4 Huang H, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 7170
  • 5 Connon SJ. Chem. Commun. 2008; 22: 2499
  • 6 Xi Y, Shi X. Chem Commun. 2013; 49: 8583
  • 7 Wang P, Li HF, Zhao JZ, Du ZH, Da C S. Org. Lett. 2017; 19: 2634
  • 8 Hang Z, Zhu J, Lian X, Xu P, Yu H, Han S. Chem. Commun. 2016; 52: 80
  • 9 Basumatary G, Mohanta R, Baruah SD, Deka RC, Bez G. Catal. Lett. 2020; 150: 106
  • 10 Basumatary G, Mohanta R, Bez G. Catal. Lett. 2019; 149: 2776
  • 11 Kotke M, Schreiner PR. Hydrogen Bonding in Organic Synthesis . Pihko PM. Wiley-VCH; Weinheim: 2009: 204
  • 12 Lippert KM, Hof K, Gerbig D, Ley D, Hausmann H, Guenther S, Schreiner PR. Eur. J. Org. Chem. 2012; 5919
  • 13 Wittkopp A, Schreiner PR. Chem. Eur. J. 2003; 9: 407
  • 14 Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152
  • 15 Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190
  • 16 Xu C, Loh CC. J. Nat. Commun. 2018; 9: 4057
  • 17 Kramer CS, Bräse S. Beilstein J. Org. Chem. 2013; 9: 1414
  • 18 Salem ZM, Saway J, Badillo JJ. Org. Lett. 2019; 21: 8528
  • 19 Mallik AK, Pal R, Guha C, Mallik H. Green Chem. Lett. Rev. 2012; 5: 321
  • 20 Safe S, Papineni S, Chintharlapalli S. Cancer Lett. 2008; 269: 326
  • 21 Wang TT, Milner MJ, Milner JA, Kim YS. J. Nutr. Biochem. 2006; 17: 659
  • 22 York M, Abdelrahim M, Chintharlapalli S, Lucero SD, Safe S. Clin. Cancer Res. 2007; 13: 6743
  • 23 Gong Y, Sohn H, Xue L, Firestone GL, Bjeldanes LF. Cancer Res. 2006; 66: 4880
  • 24 Staub RE, Feng CL, Onisko B, Bailey GS, Firestone GL, Bjeldanes LF. Chem. Res. Toxicol. 2002; 15: 101
  • 25 Nagarajan R, Perumal PT. Tetrahedron 2002; 58: 1229
  • 26 Kirkus M, Tsai MH, Grazulevicius JV, Wu CC, Chi LC, Wong KT. Synth. Met. 2009; 159: 729
  • 27 Nagarajan R, Perumal PT. Chem. Lett. 2004; 33: 288
  • 28 Mason MR, Barnard TS, Segla MF, Xie B, Kirschbaum K. J. Chem. Crystallogr. 2003; 33: 531
  • 29 Bandgar BP, Shaikh KA. Tetrahedron Lett. 2003; 44: 1959
  • 30 Bihani M, Bora PP, Askari H, Bez G. Ind. J. Chem. 2014; 53B: 877
  • 31 Madari H, Panda D, Wilson L, Jacobs RS. Cancer Res. 2003; 63: 1214
  • 32 Stahmann MA, Huebner CF, Link KP. J. Biol. Chem. 1941; 138: 513
  • 33 Li J, Sui YP, Xin JJ, Du XL, Li JT, Huo HR, Ma H, Wang WH, Zhou HY, Zhan HD, Wang ZJ, Li C, Sui F, Li X. Bioorg. Med. Chem. Lett. 2015; 25: 5520
  • 34 Hamdi N, Puerta MC, Valerga P. Eur. J. Med. Chem. 2008; 43: 2541
  • 35 Khan KM, Iqbal S, Lodhi MA, Maharvi GM, Uallah Z, Choudhary MI, Atta-ur Rahman, Perveen S. Bioorg. Med. Chem. 2004; 12: 1963
  • 36 Kharrngi B, Dhar ED, Basumatary G, Das D, Deka RC, Yadav AK, Bez G. J. Chem. Sci. 2021; 133: 1
  • 37 Al-Majid AM, Islam MS, Barakat A, Al-Qahtani NJ, Yousuf S, Choudhary MI. Arab. J. Chem. 2017; 10: 185
  • 38 Arora D, Dwivedi J, Kumar S, Kishore D. Synth. Commun. 2018; 48: 115
  • 39 Hilderbrand SA, Weissleder R. Tetrahedron Lett. 2007; 48: 4383
  • 40 Pohlers G, Scaiano JC, Sinta R. Chem. Mater. 1997; 9: 3222
  • 41 Knight CG, Stephens T. Biochem. J. 1989; 258: 683
  • 42 Veisi H, Mohammadi P, Ozturk T. J. Mol. Liq. 2020; 303: 112625
  • 43 Xie ZB, Sun DZ, Jiang GF, Le ZG. Molecules 2014; 19: 19665
  • 44 Zhang Y, Chen X, Liang J, Shang ZC. Synth. Commun. 2011; 41: 2446
  • 45 Jejurkar VP, Khatri CK, Chaturbhuj GU, Saha S. ChemistrySelect 2017; 2: 11693
  • 46 Mendes SR, Thurow S, Penteado F, da Silva MS, Gariani RA, Perin G, Lenardao EJ. Green Chem. 2015; 17: 4334
  • 47 Yadav JS, Reddy BV. S, Murthy CV, Kumar GM, Madan C. Synthesis 2001; 783
  • 48 Biswas N, Sharma R, Srimani D. Adv. Synth. Catal. 2020; 362: 2902
  • 49 Rad-Moghadam K, Sharifi-Kiasaraie M. Tetrahedron 2009; 65: 8816
  • 50 Brahmachari G, Banerjee B. ACS Sustain. Chem. Eng. 2014; 2: 2802
  • 51 Mathavan S, Kannan K, Yamajala RB. Org. Biomol. Chem. 2019; 17: 9620
  • 52 Tzani A, Douka A, Papadopoulos A, Pavlatou EA, Voutsas E, Detsi A. ACS Sustain. Chem. Eng. 2013; 1: 1180
  • 53 Vaid R, Gupta M, Kant R, Gupta VK. J. Chem. Sci. 2016; 128: 967
  • 54 Khurana JM, Vij KJ. Chem. Sci. 2012; 124: 907