Synlett 2023; 34(02): 137-142
DOI: 10.1055/a-1961-7251
letter

Fast Access to 5-Hydroxymethyl Derivatives of 2′-Deoxyuridine Promoted by Acidic Amberlyst 15 Resin

D. Liu
,
O. Monfret
,
,
,
,
G. Doisneau
We thank the French National Research Agency (grant No. ANR JADE-2020-20HR1171), the China Scholarship Council (CSC grant No.201908320281 for D.L.), and the Ministère de l’Enseignement Supérieur et de la Recherche (MRES grant for O.M.) for their financial supports of this study.


Abstract

5-Hydroxymethyl derivatives of pyrimidine nucleosides are an important class of biologically relevant compounds. In addition, such derivatives and related compounds can be functionalized for various applications. To enable fast, economical, and efficient access to 5-hydroxymethylated derivatives of 2′-deoxyuridine, we report a method for the O-5 chemoselective transformation of unprotected 5-(hydroxymethyl)-2′-deoxyuridine through selective etherification in the presence of an alcohol promoted by acidic Amberlyst 15 resin at room temperature. These mild conditions constitute a significant improvement compared with the harsh conditions previously described. Applied to various primary or secondary alcohols, the reaction showed a broad substrate scope, and 24 C(5)-modified derivatives of 5hmdU were synthesized with good isolated yields. Notably, this efficient procedure represents a straightforward method for preparing (i) several useful building blocks for subsequent chemical ligation by using CuAAC reactions; (ii) natural hypermodified thymidines and analogues, including glycosylated derivatives; and (iii) cyanoethyl-protected 5hmdU, useful for solid-phase oligonucleotide syntheses.

Supporting Information



Publication History

Received: 12 September 2022

Accepted after revision: 15 October 2022

Accepted Manuscript online:
15 October 2022

Article published online:
21 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Thomson JM, Lamont IL. Front. Microbiol. 2019; 10: 952
  • 2 Shanmugasundaram M, Senthilvelan A, Kore AR. Curr. Org. Chem. 2019; 23: 1439
  • 3 Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Microorganisms 2022; 10: 1299
  • 4 Li G, Yue T, Zhang P, Gu W, Gao L.-J, Tan L. Molecules 2021; 26: 923
  • 5 Seley-Radtke KL, Yates MK. Antiviral Res. 2018; 154: 66
  • 6 Guinan M, Benckendorff C, Smith M, Miller GJ. Molecules 2020; 25: 2050
  • 7 Bjelland S, Eide L, Time RW, Stote R, Eftedal I, Volden G, Seeberg E. Biochemistry 1995; 34: 14758
  • 8 Kriaucionis S, Heintz N. Science 2009; 324: 929
  • 9 Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Science 2009; 324: 930
  • 10 Pfaffeneder T, Spada F, Wagner M, Brandmayr C, Laube SK, Eisen D, Truss M, Steinbacher J, Hackner B, Kotljarova O, Schuermann D, Michalakis S, Kosmatchev O, Schiesser S, Steigenberger B, Raddaoui N, Kashiwazaki G, Müller U, Spruijt CG, Vermeulen M, Leonhardt H, Schär P, Müller M, Carell T. Nat. Chem. Biol. 2014; 10: 574
  • 11 Gommers-Ampt JH, Van Leeuwen F, de Beer AL. J, Vliegenthart JF. G, Dizdaroglu M, Kowalak JA, Crain PF, Borst P. Cell 1993; 75: 1129
  • 12 Lee Y.-J, Dai N, Walsh SE, Müller S, Fraser ME, Kauffman KM, Guan C, Corrêa IR. Jr, Weigele PR. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: E3116
  • 13 Yang D.-Z, Chen Z.-Z, Chi M, Dong Y.-Y, Pu S.-Z, Sun Q. Molecules 2022; 27: 749
  • 14 Hansen AS, Thalhammer A, El-Sagheer AH, Brown T, Schofield CJ. Bioorg. Med. Chem. Lett. 2011; 21: 1181
  • 15 Dai Q, He C. Curr. Protoc. Nucleic Acid Chem. 2011; 47: 4.47.1
  • 16 Xuan S, Wu Q, Cui L, Zhang D, Shao F. Bioorg. Med. Chem. Lett. 2015; 25: 1186
  • 17 Berney M, McGouran JF. Nat. Rev. Chem. 2018; 2: 332
  • 18 Kozak W, Demkowicz S, Daśko M, Rachon J, Rak J. Russ. Chem. Rev. 2020; 89: 281
  • 19 Prusoff WH. Biochim. Biophys. Acta 1959; 32: 295
  • 20 Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; Amsterdam: 2018
  • 21 Omumi A, Beach DG, Baker M, Gabryelski W, Manderville RA. J. Am. Chem. Soc. 2011; 133: 42
  • 22 Lercher L, McGouran JF, Kessler BM, Schofield CJ, Davis BG. Angew. Chem. Int. Ed. 2013; 52: 10553
  • 23 Cahová H, Jäschke A. Angew. Chem. Int. Ed. 2013; 52: 3186
  • 24 Krause A, Hertl A, Muttach F, Jäschke A. Chem. Eur. J. 2014; 20: 16613
  • 25 Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Chem. Eur. J. 2018; 24: 1795
  • 26 Ivanov AV, Simonyan AR, Belanov EF, Aleksandrova LA. Russ. J. Bioorg. Chem. 2005; 31: 556
  • 27 Shmalenyuk ER, Karpenko IL, Chernousova LN, Chizhov AO, Smirnova TG, Andreevskaya SN, Alexandrova LA. Russ. Chem. Bull. 2014; 63: 1197
  • 28 de Kort M, Ebrahimi E, Wijsman ER, van der Marel GA, van Boom JH. Eur. J. Org. Chem. 1999; 2337
  • 29 Turner JJ, Meeuwenoord NJ, Rood A, Borst P, van der Marel GA, van Boom JH. Eur. J. Org. Chem. 2003; 3832
  • 30 Doepner AM, Aboagye EO, Barrett AG. M. Tetrahedron Lett. 2015; 56: 3293
  • 31 Shiau GT, Schinazi RF, Chen MS, Prusoff WH. J. Med. Chem. 1980; 23: 127
  • 32 Cline R, Fink R, Fink K. J. Am. Chem. Soc. 1959; 81: 2521
  • 33 Scheit KH. Chem. Ber. 1966; 99: 3884
  • 34 Sowers LC, Beardsley GP. J. Org. Chem. 1993; 58: 1664
  • 35 Tardy-Planechaud S, Fujimoto J, Lin SS, Sowers LC. Nucleic Acids Res. 1997; 25: 553
  • 36 Seio K, Wada T, Sekine M. Helv. Chim. Acta 2000; 83: 162
  • 37 Liu Y, Wang X.-F, Chen Y, Zhang L.-H, Yang Z.-J. Med. Chem. Commun. 2012; 3: 506
  • 38 Harmer MA, Sun Q. Appl. Catal., A 2001; 221: 45
  • 39 Chakrabarti A, Sharma MM. React. Polym 1993; 20: 1
  • 40 Pariente S, Tanchoux N, Fajula F. Green Chem. 2009; 11: 1256
  • 41 van Grieken R, Melero JA, Morales G. J. Mol. Catal. A: Chem. 2006; 256: 29
  • 42 Sacia ER, Balakrishnan M, Bell AT. J. Catal. 2014; 313: 70
  • 43 Tajbakhsh M, Hosseinzadeh R, Lasemi Z. Synlett 2004; 635
  • 44 5-[(2-Azidoethoxy)methyl]-2′-deoxyuridine (4i); Typical Procedure5hmdU (1; 50 mg, 0.193 mmol) was suspended in MeCN (1.5 mL), and 2-azidoethanol (84 μL, 5 equiv) and Amberlyst 15 (193 mg) were successively added. The mixture was stirred overnight at r.t. until TLC showed that no starting material remained. The mixture was then filtered and concentrated to dryness. The residue was purified by column chromatography [silica gel, CH2Cl2–MeOH (50:1 to 20:1)] to give a colorless oil; yield: 51 mg (81%).1H NMR (360 MHz, CD3OD): δ = 8.06 (t, J = 1.0 Hz, 1 H, H-6), 6.30 (t, J = 6.6 Hz, 1 H, H-1′), 4.40 (dt, J = 6.0, 3.5 Hz, 1 H, H-3′), 4.32 (dd, J = 1.0, 12.1 Hz, 1 H, H7a), 4.27 (dd, J = 1.0, 12.1 Hz, 1 H, H7b), 3.94 (dt, J = 3.4, 3.5 Hz, 1 H, H-4′), 3.81 (dd, J = 3.5, 12.0 Hz, 1 H, H-5a′), 3.74 (dd, J = 3.5, 11.8 Hz, 1 H, H-5b′), 3.69 (m, 2 H, CH2O), 3.40 (m, 2 H, CH2N3), 2.27 (m, 2 H, H2′). 13C NMR (100 MHz, CD3OD): δ = 165.2 (C4), 152.2 (C2), 141.1 (C6), 112.3 (C5), 89.0 (C1′), 86.6 (C4′), 72.3 (C3′), 70.5 (C1′′), 66.5 (C7), 62.9 (C5′), 51.8 (C2′′), 41.4 (C2′). HRMS (ESI+): m/z [M + Na]+ calcd for C12H17N5NaO6: 350.1077; found: 350.1065.
  • 45 Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
  • 46 Das B, Majhi A, Banerjee J, Chowdhury N. J. Mol. Catal. A: Chem. 2006; 260: 32
  • 47 Park MH, Takeda R, Nakanishi K. Tetrahedron Lett. 1987; 28: 3823
  • 48 Padrón JI, Vázquez JT. Tetrahedron: Asymmetry 1995; 6: 857
  • 49 Yan H, Tram K. Glycoconjugate J. 2007; 24: 107
  • 50 Tri-O-benzyl-α-methylglucopyranoside was prepared according to Lin G.-M., Sun H. G., Liu H.-w: Org. Lett. 2016, 18, 3438; Diisopropylgalactopyranoside was purchased from Acros Organics BVBA (Geel, Belgium).
  • 51 Thioglucopyranoside 4xIsolated as a white solid; yield: 74%. 1H NMR (360 MHz, CD3OD): δ = 8.05 (s, 1 H, H-6), 6.28 (t, J = 6.6 Hz, 1 H, H-1′), 5.27 (t, J = 9.0 Hz, 1 H, H-3′′), 5.04 (t, J = 9.6 Hz, 1 H, H-4′′), 4.92 (t, J = 9.0 Hz, 1 H, H-2′′), 4.80 (d, J = 9.0 Hz, 1 H, H-1′′), 4.45 (m, 1 H, H-3′), 4.25 (dt, J = 4.2, 12.6 Hz, 1 H, H-6a′), 4.11 (dd, J = 2.4, 12.6 Hz, 1 H, H-6b′), 3.95 (dt, J = 3.4, 3.4 Hz, 1 H, H-4′), 3.87 (m, 1 H, H-5′′), 3.84 (dd, J = 3.4, 12 Hz, 1 H, H-5a′), 3.78 (dd, J = 3.4, 12.0 Hz, 1 H, H-5b′), 3.65 (d, J = 14.1 Hz, 1 H, H-7a), 3.58 (d, J = 14.1 Hz, 1 H, H-7b), 2.29 (m, 2 H, H-2′), 2.06, 2.01, 2.01, 1.98 (s, 12 H, 4Ac). 13C NMR (75 MHz, CD3OD): δ = 170.9 (CO), 170.2 (CO), 169.8 (CO), 169.7 (CO), 163.5 (C4), 138.3 (C6), 111.9 (C5), 87.5 (C4′), 85.2 (C1′), 83.6 (C1′′), 75.3 (C5′), 73.9 (C3′′), 70.6 (C3′), 70.1 (C2′′), 68.2 (C4′′), 61.6 (C6′′), 61.2 (C5′′), 40.1 (C2′), 26.5 (C7), 19.2 (2Ac), 19.1 (2Ac). HRMS (ESI+): m/z [M + Na]+ calcd for C24H32N2NaO14S: 627.1466; found: 627.1459.
  • 52 β-2,3,4,6-Tetra-O-acetylthioglucopyranose was purchased from Acros Organics BVBA (Geel, Belgium).
  • 53 Levina AS, Tabatadse DR, Khalimskaya LM, Prichodko TA, Shishkin GV, Alexandrova LA, Zarytova VP. Bioconjugate Chem. 1993; 4: 319
  • 54 5-(Iodomethyl)-2′-deoxyuridine (7) 1H NMR (300 MHz, CD3OD): δ = 8.08 (t, J = 0.9 Hz, 1 H, H-6), 6.29 (t, J = 6.8 Hz, 1 H, H-1′), 4.42 (dt, J = 6.0, 3.4 Hz, 1 H, H-3′), 4.20 (dd, J = 0.9, 11.9 Hz, 1 H, H-7a), 4.16 (dd, J = 0.9, 11.9 Hz, 1 H, H-7b), 3.93 (dt, J = 3.4, 3.4 Hz, 1 H, H-4′), 3.82 (dd, J = 3.4, 12.0 Hz, 1 H, H-5a′), 3.73 (dd, J = 3.7, 12.0 Hz, 1 H, H-5b′), 2.27 (m, 2 H, H-2′). 13C NMR (75 MHz, CD3OD): δ = 165.2 (C4), 152.3 (C2), 141.2 (C6), 112.1 (C5), 89.0 (C1′), 86.6 (C4′), 72.1 (C3′), 67.8 (C7), 62.8 (C5′), 41.4 (C2′).
  • 55 Ibatullin FM, Selivanov SI, Shavva AG. Synthesis 2001; 419
  • 56 Ibatullin FM, Shabalin KA, Jänis JV, Shavva AG. Tetrahedron Lett. 2003; 44: 7961
  • 57 Gan Z, Roy R. Tetrahedron Lett. 2000; 41: 1155
  • 58 Cagnoni AJ, Varela O, Gouin SG, Kovensky J, Uhrig ML. J. Org. Chem. 2011; 76: 3064