Synthesis 2023; 55(04): 580-597
DOI: 10.1055/a-1983-2140
feature

Doubly Switchable Diastereodivergent Strategy Mediated by a Chiral Sulfoxide to Access Disubstituted Tetrahydrocyclopenta­pyranone and Hexahydrocyclopentapyranol Scaffolds via Nazarov Cyclization

Erwann Grenet
a   Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1019, route de Mende, 34293 Montpellier, France
,
Arie van der Lee
b   IEM, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
,
Xavier J. Salom-Roig
a   Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1019, route de Mende, 34293 Montpellier, France
› Author Affiliations


Abstract

Activated dienones bearing a chiral sulfoxide were transformed diastereodivergently into the corresponding disubstituted 3,4,5,6-tetrahydrocyclopenta[b]pyran-7(2H)-ones. The torquoselectivity of the reaction could be switched by changing the Lewis acid used as promoter. From the four possible stereoisomers, only the two trans were observed. In a second switchable diastereodivergent step, both corresponding diastereomeric 2,3,4,5,6,7-hexahydrocyclopenta[b]pyran-7-ols were obtained via the diastereoselective reduction of the ketone by changing the reducing agent. The Lewis acids as well as the reducing agents employed in both diastereodivergent steps were achiral, the diastereoselectivities being dictated by the sulfinyl auxiliary.

Supporting Information



Publication History

Received: 21 September 2022

Accepted after revision: 21 November 2022

Accepted Manuscript online:
21 November 2022

Article published online:
20 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Calcaterra A, D’Acquarica I. J. Pharm. Biomed. Anal. 2018; 147: 323
  • 2 Lin L, Feng X. Chem. Eur. J. 2017; 23: 6464
    • 3a Grenet E, Martinez J, Salom-Roig XJ. Chem. Eur. J. 2016; 22: 16770
    • 3b Grenet E, Robidas R, va der Lee A, Legault CY, Salom-Roig XJ. Eur J. Org. Chem. 2022; e202200828
    • 4a Qi Q.-Y, Bao L, Ren J.-W, Han J.-J, Zhang Z.-Y, Li Y, Yao Y.-J, Cao R, Liu H.-W. Org. Lett. 2014; 16: 5092
    • 4b Qi Q.-Y, Ren J.-W, Sun L.-W, He L.-W, Bao L, Yue W, Sun Q.-M, Yao Y.-J, Yin W.-B, Liu H.-W. Org. Lett. 2015; 17: 3098
    • 4c Qiu Y, Lan W.-J, Li H.-J, Chen L.-P. Molecules 2018; 23: 2095
  • 5 Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. Org. Biomol. Chem. 2009; 7: 3413
    • 6a Hubbs JL, Fuller NO, Austin WF, Shen R, Creaser SP, McKee TD, Loureiro RM. B, Tate B, Xia W, Ives J, Bronk BS. J. Med. Chem. 2012; 55: 9270
    • 6b Findeis MA, Schroeder F, McKee TD, Yager D, Fraering PC, Creaser SP, Austin WF, Clardy J, Wang R, Selkoe D, Eckman CB. ACS Chem. Neurosci. 2012; 3: 941
    • 6c Fuller NO, Hubbs JL, Austin WF, Creaser SP, McKee TD, Loureiro RM. B, Tate B, Xia W, Ives JL, Findeis MA, Bronk BS. ACS Med. Chem. Lett. 2012; 3: 908
  • 7 Su Y, Wua L, Muc G, Wang Q, Yang B, Cheng G, Kuang H. Bioorg. Med. Chem. 2017; 25: 4917
  • 8 For an overview on the latest applications of chiral sulfoxides in asymmetric synthesis, see: Carreño MC, Hernández-Torres G, Ribagorda M, Urbano A. Chem. Commun. 2009; 6129
    • 9a Bauder C, Martinez J, Salom-Roig XJ. Curr. Org. Synth. 2013; 10: 885
    • 9b Tang Y, Sun Y, Liu J, Duttwyler S. Org. Biomol. Chem. 2016; 14: 5580
    • 10a Fernández de la Pradilla R, Lwoff N, del Aguila MA, Tortosa M, Viso A. J. Org. Chem. 2008; 73: 8929
    • 10b Simal C, Bates RH, Ureña M, Giménez I, Koutsou C, Infantes L, Fernández de la Pradilla R, Viso A. J. Org. Chem. 2015; 80: 7674
  • 11 Kingsbury CA, Draney D, Sopchik A, Rissler W, Durham D. J. Org. Chem. 1976; 41: 3863
  • 12 CCDC 2176273 (13a), 1487502 (1b) and 1487499 (21) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 13 For the pioneering use of AlCl3 as a catalyst for a Nazarov reaction, see: Liang G, Gradl SN, Trauner D. Org. Lett. 2003; 5: 4931
  • 14 Canterbury DP, Herrick IR, Um J, Houk KN, Frontier AJ. Tetrahedron 2009; 65: 3165
    • 15a Russell GA, Mikol GJ. J. Am. Chem. Soc. 1966; 88: 5498
    • 15b Holton RA, Crouse DJ, Williams AD, Kennedy RM. J. Org. Chem. 1987; 52: 2317
    • 16a Solladié G, Greck C, Demailly G, Solladié-Cavallo A. Tetrahedron Lett. 1982; 23: 5047
    • 16b Solladié G, Demailly G, Greck C. Tetrahedron Lett. 1985; 25: 435
  • 17 Kosugi H, Konta H, Uda H. J. Chem. Soc., Chem. Commun. 1985; 211
    • 18a García Ruano JL, Maestro MC, Sánchez-Sancho F. Tetrahedron: Asymmetry 1995; 6: 2299
    • 18b García Ruano JL, Maestro MC, Barros D, González-Vadillo AM. Tetrahedron: Asymmetry 1996; 7: 1819
    • 18c García Ruano JL, Yuste F, Sánchez-Obregón R, Carrasco A, Peralta M, Quintero L, Walls F. Tetrahedron: Asymmetry 2000; 11: 3079
    • 18d Carreño MC, Sanz-Cuesta MJ, Colobert F, Solladié G. Org. Lett. 2004; 6: 3537
  • 19 Bonner WA. J. Am. Chem. Soc. 1952; 74: 1033
  • 20 Rueping M, Ieawsuwan W, Antonchick AP, Nachtsheim BJ. Angew. Chem. Int. Ed. 2007; 46: 2097 ; Angew. Chem. 2007, 119, 2143
  • 21 He W, Herrick IR, Atesin TA, Caruana PA, Kellenberger CA, Frontier AJ. J. Am. Chem. Soc. 2008; 130: 1003
  • 22 White TD, West FG. Tetrahedron Lett. 2005; 46: 5629