Synlett 2023; 34(13): 1593-1596
DOI: 10.1055/a-2029-0694
letter

Dehydroxylative Cyanation of Alcohols Promoted by Triphenyphosphine/1,2-Diiodoethane

Ling Luo
a   College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, P. R. of China
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
,
Jin-Hong Lin
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
c   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
,
Ji-Chang Xiao
a   College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, P. R. of China
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
› Author Affiliations
We thank the National Key Research and Development Program of China (2021YFF0701700), the National Natural Science Foundation (21971252, 21991122, 22271181), and the Science and Technology Commission of Shanghai Municipality (22ZR1423600) for financial support.


Abstract

A Ph3P/ICH2CH2I-promoted dehydroxylative cyanation of alcohols has been developed. In contrast to previous dehydroxylative cyanation methods that can suffer from several limitations, such as the use of transition metals or moisture-sensitive Lewis acids, this protocol features convenient operations, mild reaction conditions, and the use of cheap and widely available reagents.

Supporting Information



Publication History

Received: 03 January 2023

Accepted after revision: 06 February 2023

Accepted Manuscript online:
06 February 2023

Article published online:
28 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1b Li D, Zhan P, De Clercq E, Liu X. J. Med. Chem. 2012; 55: 3595
    • 1c Oliveira R, Guedes RC, Meireles P, Albuquerque IS, Gonçalves LM, Pires E, Bronze MR, Gut J, Rosenthal PJ, Prudêncio M, Moreira R, O’Neill PM, Lopes F. J. Med. Chem. 2014; 57: 4916
    • 1d Fromont C, Atzori A, Kaur D, Hashmi L, Greco G, Cabanillas A, Nguyen HV, Jones DH, Garzón M, Varela A, Stevenson B, Iacobini GP, Lenoir M, Rajesh S, Box C, Kumar J, Grant P, Novitskaya V, Morgan J, Sorrell FJ, Redondo C, Kramer A, Harris CJ, Leighton B, Vickers SP, Cheetham SC, Kenyon C, Grabowska AM, Overduin M, Berditchevski F, Weston CJ, Knapp S, Fischer PM, Butterworth S. J. Med. Chem. 2020; 63: 6784
    • 2a Wang M.-X. Acc. Chem. Res. 2015; 48: 602
    • 2b Yang X, Fleming FF. Acc. Chem. Res. 2017; 50: 2556
    • 2c Chu X.-Q, Ge D, Shen Z.-L, Loh T.-P. ACS Catal. 2018; 8: 258
    • 2d Garduño JA, García JJ. ACS Catal. 2020; 10: 8012
  • 3 Milne RJ, Goa KL. Drugs 1991; 41: 450
  • 4 Thomas TJ, Pauze D, Love JN. J. Emerg. Med. 2008; 34: 71
  • 5 The ATAC (Armidex, Tamoxifen Alone or in Combination) Trialists’ Group Cancer 2003; 98: 1802
  • 6 Dhillon S. Drugs 2017; 77: 1987
    • 7a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 7b Kurono N, Ohkuma T. ACS Catal. 2016; 6: 989
    • 7c Cui J, Song J, Liu Q, Liu H, Dong Y. Chem. Asian J. 2018; 13: 482
    • 7d Saranya S, Neetha M, Aneeja T, Anilkumar G. Adv. Synth. Catal. 2020; 362: 4543
    • 7e Wu W.-B, Yu J.-S, Zhou J. ACS Catal. 2020; 10: 7668
    • 7f Patel RI, Sharma S, Sharma A. Org. Chem. Front. 2021; 8: 3166
    • 8a Kent RE, McElvain SM. Org. Synth. 1945; 25: 61
    • 8b Krynitsky JA, Carhart HW. Org. Synth. 1952; 32: 65
  • 9 Gregory RJ. H. Chem. Rev. 1999; 99: 3649
  • 10 Friedman L, Shechter H. J. Org. Chem. 1960; 25: 877
  • 12 Koelsch CF, Whitney AG. J. Org. Chem. 1941; 6: 795
    • 13a Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC. J. Am. Chem. Soc. 2008; 130: 4828
    • 13b Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 13c Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
    • 13d Mondal B, Acharyya K, Howlader P, Mukherjee PS. J. Am. Chem. Soc. 2016; 138: 1709
    • 14a Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
    • 14b Ratani TS, Bachman S, Fu GC, Peters JC. J. Am. Chem. Soc. 2015; 137: 13902
    • 14c Miwa N, Tanaka C, Ishida S, Hirata G, Song J, Torigoe T, Kuninobu Y, Nishikata T. J. Am. Chem. Soc. 2020; 142: 1692
    • 15a Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
    • 15b Mills LR, Graham JM, Patel P, Rousseaux SA. L. J. Am. Chem. Soc. 2019; 141: 19257
    • 15c Chen H, Sun S, Liu YA, Liao X. ACS Catal. 2020; 10: 1397
    • 16a Mitsunobu O. Synthesis 1981; 1
    • 16b Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 16c Tsunoda T, Uemoto K, Nagino C, Kawamura M, Kaku H, Itô S. Tetrahedron Lett. 1999; 40: 7355
    • 17a Chen G, Wang Z, Wu J, Ding K. Org. Lett. 2008; 10: 4573
    • 17b Rajagopal G, Kim SS. Tetrahedron 2009; 65: 4351
    • 17c Wang J.-C, Masui Y.-I, Onaka M. ACS Catal. 2011; 1: 446
    • 18a Lu F.-D, Liu D, Zhu L, Lu L.-Q, Yang Q, Zhou Q.-Q, Wei Y, Lan Y, Xiao W.-J. J. Am. Chem. Soc. 2019; 141: 6167
    • 18b Xia A, Lv P, Xie X, Liu Y. Org. Lett. 2020; 22: 7842
  • 19 Long J, Xia S, Wang T, Cheng G.-J, Fang X. ACS Catal. 2021; 11: 13880
  • 20 Ding Y, Long J, Sun F, Fang X. Org. Lett. 2021; 23: 6073
    • 21a Mizuno A, Hamada Y, Shioiri T. Synthesis 1980; 1007
    • 21b Iranpoor N, Firouzabadi H, Akhlaghinia B, Nowrouzi N. J. Org. Chem. 2004; 69: 2562
    • 21c Soltani Rad MN, Khalafi-Nezhad A, Behrouz S, Faghihi MA. Tetrahedron Lett. 2007; 48: 6779
    • 22a Chen J, Lin J.-H, Xiao J.-C. Org. Lett. 2018; 20: 3061
    • 22b Chen J, Lin J.-H, Xiao J.-C. Chem. Commun. 2018; 54: 7034
    • 22c Zhang W, Chen J, Lin J.-H, Xiao J.-C, Gu Y.-C. iScience 2018; 5: 110
    • 22d Zhang W, Gu YC, Lin J.-H, Xiao J.-C. Org. Lett. 2020; 22: 6642
    • 22e Zhang W, Lin J.-H, Wu W, Cao Y.-C, Xiao J.-C. Chin. J. Chem. 2020; 38: 169
  • 23 Cui H, Shen Y, Chen Y, Wang R, Wei H, Fu P, Lei X, Wang H, Bi R, Zhang Y. J. Am. Chem. Soc. 2022; 144: 8938
  • 24 Dehydroxylative Cyanation of Alcohols: General Procedure A 25 mL tube was charged with Ph3P (0.6 mmol, 1.2 equiv), ICH2CH2I (0.6 mmol, 1.2 equiv), the appropriate alcohol 1 (0.5 mmol, 1 equiv), and DMF (5 mL) under N2. When the solid had completely dissolved, TMSCN (4.0 equiv) and K2CO3 (3.0 equiv) were added under N2 and the mixture was stirred at r.t. for 12 h. Sat. aq brine was added and the crude organic product was extracted with CH2Cl2. The combined organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, pentane–EtOAc) Biphenyl-4-ylacetonitrile (3a) White solid; yield: 94 mg (97%). 1H NMR (400 MHz, CDCl3): δ = 7.65–7.53 (m, 4 H), 7.50–7.33 (m, 5 H), 3.80 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 141.2, 140.2, 128.9, 128.8, 128.4, 127.9, 127.7, 127.1, 117.8, 23.3. LRMS (EI): m/z [M]+ calcd for C14H11N: 193.1; found: 193.1.