Synthesis 2023; 55(13): 1996-2004
DOI: 10.1055/a-2030-7730
paper

Fully Substituted Dihydropyrimidines, Pentasubstituted 2-Aryldihydropyrimidines Synthesized by Palladium-Catalyzed/Copper-Mediated Cross-Coupling Reaction

a   School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
,
Takanori Kubo
b   Faculty of Pharmacy, Yasuda Women’s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
,
Nanami Shibuya
a   School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
,
Hidetsura Cho
c   Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
› Author Affiliations


Abstract

Dihydropyrimidines (DPs) show a wide range of biological activities suitable for medicinal applications. Among DP derivatives, 2-aryl-DPs have been reported to display remarkable pharmacological properties. In this work, a method of synthesizing hitherto unavailable fully substituted pentasubstituted 2-aryl-DPs as tautomeric mixture is described using a Pd(PPh3)4-catalyzed/CuBr-mediated 2-arylation reaction. The reaction using aryltributylstannanes with various substituents such as MeO, Me, Ph, CF3, CO2Me, and NO2 groups efficiently afforded the corresponding 2-aryl-DPs in high yields. Heteroaryltributylstannanes having 2-thienyl, 3-thienyl, or 2-pyridinyl groups were also suitable for the reaction. Regarding the substituents at the 4-, 5-, and 6-positions of DPs, the reactions of DPs bearing substituents such as Me, n-C3H7, n-C5H11, -(CH2)5-, phenyl, and fluorenylidene groups proceeded smoothly to give the desired products. The synthetic method was also applied to a 2-thioxo-DP to give the 2-aryl-DP. Therefore, the reaction will help expand DP-based molecular diversity, which may impact biological and pharmacological studies.

Supporting Information



Publication History

Received: 16 December 2022

Accepted after revision: 08 February 2023

Accepted Manuscript online:
08 February 2023

Article published online:
13 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Cho H, Ueda M, Shima K, Mizuno A, Hayashimatsu M, Ohnaka Y, Takeuchi Y, Hamaguchi M, Aisaka K, Hidaka T, Kawai M, Takeda M, Ishihara T, Funahashi K, Satoh F, Morita M, Noguchi T. J. Med. Chem. 1989; 32: 2399
    • 1b Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC. J. Med. Chem. 1991; 34: 806
    • 2a Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Science 1999; 286: 971
    • 2b Maliga Z, Kapoor TM, Mitchison TJ. Chem. Biol. 2002; 9: 989
  • 3 Ramachandran V, Arumugasamy K, Singh SK, Edayadulla N, Ramesh P, Kamaraj S.-K. J. Chem. Biol. 2016; 9: 31
  • 4 Chhillar AK, Arya P, Mukherjee C, Kumar P, Yadav Y, Sharma AK, Yadav V, Gupta J, Dabur R, Jha HN, Watterson AC, Parmar VS, Prasad AK, Sharma GL. Bioorg. Med. Chem. 2006; 14: 973
  • 5 Naidu BN, Sorenson ME, Patel M, Ueda Y, Banville J, Beaulieu F, Bollini S, Dicker IB, Higley H, Lin Z, Pajor L, Parker DD, Terry BJ, Zheng M, Martel A, Meanwell NA, Krystal M, Walker MA. Bioorg. Med. Chem. Lett. 2015; 25: 717
  • 6 October N, Watermeyer ND, Yardley V, Egan TJ, Ncokazi K, Chibale K. ChemMedChem 2008; 3: 1649
  • 7 Gijsen HJ. M, Berthelot D, De Cleyn MA. J, Geuens I, Brône B, Mercken M. Bioorg. Med. Chem. Lett. 2012; 22: 797
  • 8 da Silva DL, Reis FS, Muniz DR, Ruiz AL. T. G, de Carvalho JE, Sabino AA, Modolo LV, de Fátima Â. Bioorg. Med. Chem. 2012; 20: 2645
    • 9a Kappe CO. Eur. J. Med. Chem. 2000; 35: 1043
    • 9b Kappe CO, Stadler A. Org. React. 2004; 63: 1
    • 9c Cho H. Heterocycles 2013; 87: 1441
    • 9d Nagarajaiah H, Mukhopadhyay A, Moorthy JN. Tetrahedron Lett. 2016; 57: 5135
    • 9e Kaur R, Chaudhary S, Kumar K, Gupta MK, Rawal RK. Eur. J. Med. Chem. 2017; 132: 108
    • 9f Matos LH. S, Masson FT, Simeoni LA, Homem-de-Mello M. Eur. J. Med. Chem. 2018; 143: 1779
    • 9g Chopda LV, Dave PN. ChemistrySelect 2020; 5: 5552
  • 10 Deres K, Schröder CH, Paessens A, Goldmann S, Hacker HJ, Weber O, Krämer T, Niewöhner U, Pleiss U, Stoltefuss J, Graef E, Koletzki D, Masantschek RN. A, Reimann A, Jaeger R, Groß R, Beckermann B, Schlemmer K.-H, Haebich D, Rübsamen-Waigmann H. Science 2003; 299: 893
  • 11 Yang X.-y, Xu X.-q, Guan H, Wang L.-l, Wu Q, Zhao G.-m, Li S. Bioorg. Med. Chem. Lett. 2014; 24: 4247
  • 12 Sehon CA, Wang GZ, Viet AQ, Goodman KB, Dowdell SE, Elkins PA, Semus SF, Evans C, Jolivette LJ, Kirkpatrick RB, Dul E, Khandekar SS, Yi T, Wright LL, Smith GK, Behm DJ, Benthley R, Doe CP, Hu E, Lee D. J. Med. Chem. 2008; 51: 6631
  • 13 Teracciano S, Chini MG, Vaccaro MC, Strocchia M, Foglia A, Vassallo A, Saturnino C, Riccio R, Bifulco G, Bruno I. Chem. Commun. 2016; 52: 12857
    • 14a Lengar A, Kappe CO. Org. Lett. 2004; 6: 771
    • 14b Prokopcová H, Kappe CO. J. Org. Chem. 2007; 72: 4440
    • 14c Sun Q, Suzenet F, Guillaumet G. Tetrahedron Lett. 2012; 53: 2694
  • 15 Nguyen TK, Titov GD, Khoroshilova OV, Kinzhalov MA, Rostovskii NV. Org. Biomol. Chem. 2020; 18: 4971
    • 16a Cho H, Nishimura Y, Yasui Y, Yamaguchi M. Tetrahedron Lett. 2012; 53: 1177
    • 16b Nishimura Y, Yasui Y, Kobayashi S, Yamaguchi M, Cho H. Tetrahedron 2012; 68: 3342
    • 16c Nishimura Y, Cho H. Tetrahedron Lett. 2014; 55: 411
    • 16d Nishimura Y, Cho H. Synlett 2015; 26: 233
    • 16e Nishimura Y, Kubo T, Okamoto Y, Cho H. Tetrahedron Lett. 2016; 57: 4492
    • 16f Nishimura Y, Kubo T, Okamoto Y, Cho H. Tetrahedron Lett. 2017; 58: 4236
    • 16g Nishimura Y, Kikuchi H, Kubo T, Gokurakuji Y, Nakamura Y, Arai R, Yuan B, Sunaga K, Cho H. Tetrahedron Lett. 2020; 61: 151967
    • 16h Nishimura Y, Kikuchi H, Kubo T, Nakakita I, Oguni M, Ohta M, Arai R, Yuan B, Sunaga K, Cho H. Tetrahedron Lett. 2021; 65: 152760
  • 17 Traube W, Schwarz R. Ber. Dtsch. Chem. Ges. 1899; 32: 3163
  • 18 Nishimura Y, Okamoto Y, Ikunaka M, Ohyama Y. Chem. Pharm. Bull. 2011; 59: 1458
    • 19a Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
    • 19b Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2001; 3: 91
    • 19c Kusturin CL, Liebeskind LS, Neumann WL. Org. Lett. 2002; 4: 983
    • 19d Egi M, Liebeskind LS. Org. Lett. 2003; 5: 801
    • 19e Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
    • 19f Hirschbeck V, Gehrtz PH, Fleischer I. Chem. Eur. J. 2018; 24: 7092
  • 20 Nishimura Y, Kubo T, Takayama S, Yoshida H, Cho H. RSC Adv. 2022; 12: 28113

    • For recent examples of Pd-catalyzed/Cu-mediated oxidative cross-coupling reactions of 2-thioxo-DPs, see:
    • 21a Phan NH. T, Kim H, Shin H, Lee H.-S, Sohn J.-H. Org. Lett. 2016; 18: 5154
    • 21b Kim H, Phan NH. T, Shin H, Lee H.-S, Sohn J.-H. Tetrahedron 2017; 73: 6604
    • 21c Kim H, Lee J, Shin H, Sohn J.-H. Org. Lett. 2018; 20: 1961
    • 21d Phan NS. L, Shin H, Kang JY, Sohn J.-H. J. Org. Chem. 2020; 85: 5087
    • 21e Phan TN. H, Lee J, Shin H, Sohn J.-H. J. Org. Chem. 2021; 86: 5423
  • 22 Harrowven DC, Curran DP, Kostiuk SL, Wallis-Guy IL, Whiting S, Stenning KJ, Tang B, Packard E, Nanson L. Chem. Commun. 2010; 46: 6335
  • 23 Nishimura Y, Kikuchi H, Kubo T, Arai R, Toguchi Y, Yuan B, Sunaga K, Cho H. Chem. Pharm. Bull. 2022; 70: 111